首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
There has been surge in the usage of Internet as well as social media platforms which has led to rise in online hate speech targeted on individual or group. In the recent years, hate speech has resulted in one of the challenging problems that can unfurl at a fast pace on digital platforms leading to various issues such as prejudice, violence and even genocide. Considering the acceptance of Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques in varied application domains, it would be intriguing to consider these techniques for automated hate speech detection. In literature, there have been efforts to recognize and categorize hate speech using varied Machine Learning (ML) and Deep Learning (DL) techniques. Hence, considering the need and provocations for hate speech detection we aim to present a comprehensive review that discusses fundamental taxonomy as well as recent advances in the field of online hate speech identification. There is a significant amount of literature related to the initial phases of hate speech detection. The background section provides a detailed explanation of the previous research. The subsequent section that follows is dedicated to examining the recent literature published from the year 2020 onwards. The paper presents some of the hate speech datasets considered for hate speech detection. Furthermore, the paper discusses different data modalities, namely, textual hate speech detection, multi-modal hate speech detection and multilingual hate speech detection. Apart from systematic review on hate speech detection, the paper also implement several multi-label models to compare the performance of hate speech detection by employing classic ML technique namely, Logistic Regression and DL technique namely, Long Short-Term Memory (LSTM) and a multiclass multi-label architecture. In the implemented architecture, we have derived two new elements to quantify the hatefulness and intensity of hatred to improve the results for hate speech detection using Indonesian tweet dataset. Empirical Analysis of the model reveals that the implemented approach outperforms and is able to achieve improved results for the underlying dataset.  相似文献   

2.
3.
SOM结合MLP的神经网络语音识别系统   总被引:2,自引:0,他引:2  
提出一种结合自组织特征映射(Self-organizingFea-tureMap,SOM)和多层感知器(MultilayerPerceptron,MLP)的神经网络语音识别系统,该系统有较好的识别效果  相似文献   

4.
We describe a technique for automatically adapting to the rate of an incoming signal. We first build a model of the signal using a recurrent network trained to predict the input at some delay, for a typical rate of the signal. Then, fixing the weights of this network, we adapt the time constant of the network using gradient descent, adapting the delay appropriately as well. We have found that on simple signals, the network adapts rapidly to new inputs varying in rate from being twice as fast as the original signal, down to ten times as slow. So far our results are based on linear rate changes. We discuss the possibilities of the application of this idea to speech.  相似文献   

5.
    
Intense volatility in financial markets affects humans worldwide. Therefore, relatively accurate prediction of volatility is critical. We suggest that massive data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. First, we select 28 key words, which are related to finance as indicators of the public mood and macroeconomic factors. Then, those 28 words of the daily search volume based on Baidu index are collected manually, from June 1, 2006 to October 29, 2017. We apply a Long Short‐Term Memory neural network to forecast CSI300 volatility using those search volume data. Compared to the benchmark GARCH model, our forecast is more accurate, which demonstrates the effectiveness of the LSTM neural network in volatility forecasting.  相似文献   

6.
该文提出了一种以商品评论为对象的基于语义融合的跨语言情感分类算法。该算法首先从短文本语义表示的角度出发,基于开源工具Word2Vec预先生成词嵌入向量来获得不同语言下的信息表示;其次,根据不同语种之间的词向量的统计关联性提出使用自联想记忆关系来融合提取跨语言文档语义;然后利用卷积神经网络的局部感知性和权值共享理论,融合自联想记忆模型下的复杂语义表达,从而获得不同长度的短语融合特征。深度神经网络将能够学习到任意语种语义的高层特征致密组合,并且输出分类预测。为了验证算法的有效性,将该模型与最新几种模型方法的实验结果进行了对比。实验结果表明,此模型适用于跨语言情感语料正负面情感分类,实验效果明显优于现有的其他算法。  相似文献   

7.
针对新疆地区的多语种发展现状做出介绍,涉及到维哈柯语料库、机器翻译、维吾尔语语音识别等领域,重点介绍新疆多语种智能化研究机构以及各机构的主要研究方向和内容。  相似文献   

8.
A novel hybrid neural network trained by the genetic algorithms is presented. Genetic algorithms are used to improve the neural net's classification performance while minimizing the number of nodes. Each node of the network forms a closed region in the input space. The closed regions, which are formed by the nodes, intersect each other. The performance of the proposed hybrid neural network is compared with the multilayer perceptron, and the restricted Coulomb energy network for the segmentation of MR and CT head images. Experimental results show that the proposed neural network gives the best classification performance with a small number of nodes in short training times.  相似文献   

9.
在增大训练数据的情况下,使用传统的隐马尔科夫模型难以提升参数化语音合成预测质量。长短期记忆神经网络学习序列内的长程特征,在大规模并行数值计算下获得更准确的语音时长和更连贯的频谱模型,但同时也包含了可简化的计算。首先分析双向长短期记忆神经网络功能结构,接着移除遗忘门和输出门,最后对文本音素信息到倒频谱的映射关系建模。在普通话语料库上的对比实验证明,简化双向长短期记忆神经网络计算量减少一半,梅尔倒频率失真度由隐马尔科夫模型的3.466 1降低到1.945 9。  相似文献   

10.
在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究了在特征空间中对说话人进行建模的技术,提取出能有效反映说话人和信道信息的身份认证矢量(i-vector);最后将上述研究结合构建了基于i-vector特征的LSTM递归神经网络系统。在Open KWS 2013标准数据集上进行实验,结果表明该技术相比于深度神经网络基线系统有相对10%的字节错误率降低。  相似文献   

11.
神经网络用于分割图像时需要大量的训练数据,由于数据量大,计算速度相当慢。不适合实时数据处理。基于此,将粗糙集理论与神经网络相结合,提出基于粗糙集的神经网络图像分割方法。利用粗糙集理论中的约简的计算方法,从图像属性中获取精简的规则,根据这些规则构造神经网络各层的神经元个数,并根据粗糙集理论中的属性重要性来修正神经网络的权值。实验结果表明,该方法抗噪能力强,提高了精度,在大大缩短网络训练时间的同时改善了分割效果。满足图像处理的实时性要求。  相似文献   

12.
随着电力通信网络的快速增长,网络中通信设备的在线状态预测对于提升运维可靠性具有重要意义。在实际场景中,设备工作数据来源复杂,往往存在数据维度高、特征稀疏且模式重复等问题,导致传统的预测方法性能非常受限。本文提出一种基于注意力机制和LSTM(长短时记忆)模块的设备状态预测模型。模型训练分2阶段进行,保证注意力机制能够通过端到端学习对原始特征进行充分降维并提取出最相关的信息进行状态预测。基于电力通信网络真实运维数据进行一系列验证实验,结果表明所提方法在设备状态预测问题中的有效性。  相似文献   

13.
14.
跨语言短文本情感分析作为自然语言处理领域的一项重要的任务, 近年来备受关注. 跨语言情感分析能够利用资源丰富的源语言标注数据对资源匮乏的目标语言数据进行情感分析, 建立语言之间的联系是该任务的核心.与传统的机器翻译建立联系方法相比, 迁移学习更胜一筹, 而高质量的跨语言文本向量则会提升迁移效果. 本文提出LAAE网络模...  相似文献   

15.
    
Generative adversarial networks (GANs) are paid more attention to dealing with the end-to-end speech enhancement in recent years. Various GAN-based enhancement methods are presented to improve the quality of reconstructed speech. However, the performance of these GAN-based methods is worse than those of masking-based methods. To tackle this problem, we propose speech enhancement method with a residual dense generative adversarial network (RDGAN) contributing to map the log-power spectrum (LPS) of degraded speech to the clean one. In detail, a residual dense block (RDB) architecture is designed to better estimate the LPS of clean speech, which can extract rich local features of LPS through densely connected convolution layers. Meanwhile, sequential RDB connections are incorporated on various scales of LPS. It significantly increases the feature learning flexibility and robustness in the time-frequency domain. Simulations show that the proposed method achieves attractive speech enhancement performance in various acoustic environments. Specifically, in the untrained acoustic test with limited priors, e.g., unmatched signal-to-noise ratio (SNR) and unmatched noise category, RDGAN can still outperform the existing GAN-based methods and masking-based method in the measures of PESQ and other evaluation indexes. It indicates that our method is more generalized in untrained conditions.  相似文献   

16.
词汇的表示问题是自然语言处理的基础研究内容。目前单语词汇分布表示已经在一些自然语言处理问题上取得很好的应用效果,然而在跨语言词汇的分布表示上国内外研究很少,针对这个问题,利用两种语言名词、动词分布的相似性,通过弱监督学习扩展等方式在中文语料中嵌入泰语的互译词、同类词、上义词等,学习出泰语词在汉泰跨语言环境下的分布。实验基于学习到的跨语言词汇分布表示应用于双语文本相似度计算和汉泰混合语料集文本分类,均取得较好效果。  相似文献   

17.
    
Machine Learning (ML) algorithms have demonstrated remarkable performance in dysphonia detection using speech samples. However, their efficacy often diminishes when tested on languages different from the training data, raising questions about their suitability in clinical settings. This study aims to develop a robust method for cross- and multi-lingual dysphonia detection that overcomes the limitation of language dependency in existing ML methods. We propose an innovative approach that leverages speech embeddings from speaker verification models, especially ECAPA and x-vector and employs a majority voting ensemble classifier. We utilize speech features extracted from ECAPA and x-vector embeddings to train three distinct classifiers. The significant advantage of these embedding models lies in their capability to capture speaker characteristics in a language-independent manner, forming fixed-dimensional feature spaces. Additionally, we investigate the impact of generating synthetic data within the embedding feature space using the Synthetic Minority Oversampling Technique (SMOTE). Our experimental results unveil the effectiveness of the proposed method for dysphonia detection. Compared to results obtained from x-vector embeddings, ECAPA consistently demonstrates superior performance in distinguishing between healthy and dysphonic speech, achieving accuracy values of 93.33% and 96.55% in both cross-lingual and multi-lingual scenarios, respectively. This highlights the remarkable capabilities of speaker verification models, especially ECAPA, in capturing language-independent features that enhance overall detection performance. The proposed method effectively addresses the challenges of language dependency in dysphonia detection. ECAPA embeddings, combined with majority voting ensemble classifiers, show significant potential for improving the accuracy and reliability of dysphonia detection in cross- and multi-lingual scenarios.  相似文献   

18.
The process of counting stuttering events could be carried out more objectively through the automatic detection of stop-gaps, syllable repetitions and vowel prolongations. The alternative would be based on the subjective evaluations of speech fluency and may be dependent on a subjective evaluation method. Meanwhile, the automatic detection of intervocalic intervals, stop-gaps, voice onset time and vowel durations may depend on the speaker and the rules derived for a single speaker might be unreliable when trying to consider them as universal ones. This implies that learning algorithms having strong generalization capabilities could be applied to solve the problem. Nevertheless, such a system requires vectors of parameters, which characterize the distinctive features in a subject's speech patterns. In addition, an appropriate selection of the parameters and feature vectors while learning may augment the performance of an automatic detection system.The paper reports on automatic recognition of stuttered speech in normal and frequency altered feedback speech. It presents several methods of analyzing stuttered speech and describes attempts to establish those parameters that represent stuttering event. It also reports results of some experiments on automatic detection of speech disorder events that were based on both rough sets and artificial neural networks.  相似文献   

19.
20.
为了解决语音识别中深层神经网络的说话人与环境自适应问题,本文从语音信号中的说话人与环境因素的固有特点出发,提出了使用长时特征的自适应方案:首先基于高斯混合模型,建立说话人-环境联合补偿模型,对说话人与环境参数进行估计,将此参数作为长时特征;然后,将估计出来长时特征与短时特征一起送入深层神经网络,进行训练。Aurora4实验表明,这一方案可以有效地对说话人与环境因素进行分解,并提升自适应效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号