首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了近期锂离子电池层状多元复合正极材料的研究进展。重点介绍了提高电化学性能的方法,分析了影响电化学性能的因素。进一步预测了该材料的发展前景,认为该材料综合了层状LiNiO2、LiMnO2和LiCoO2等材料的优点,具有广阔的市场前景和开发价值。  相似文献   

2.
通过湿法纺丝工艺成功制备了纳米硅/还原氧化石墨烯复合纤维材料,并对其进行形貌表征与电化学性能测试。纳米硅颗粒嵌入石墨烯层间褶皱的结构具有限制硅材料在储锂过程中体积膨胀的作用,适于作为锂离子电容器负极。同时,研究了锂离子电容器多孔活性炭正极材料的双电层电容特性,通过组装成对称超级电容器,对其电化学性能进行测试,并结合材料的形貌,分析其作为锂离子电容器正极的合理性。为使正负极电荷匹配,分别对负极硅碳纤维和正极活性炭材料组装的锂离子半电池的倍率、循环稳定性、电化学阻抗等电化学性能进行了测试。结果表明,纳米硅/还原氧化石墨烯复合纤维材料的比容量最高可达826.2 mA·h/g(在电流密度为0.2 A/g时),活性炭比容量可达39.9 mA·h/g。组装成的锂离子电容器在合理的匹配条件下,充放电首圈循环比容量可达58.2 mA·h/g (在电流密度为0.2 A/g时),能量密度为26.8 W·h/kg,循环100圈后,比容量保持率降至41.7%。  相似文献   

3.
采用共沉淀法和高温固相烧结法制备了锂离子电池正极材料,研究了pH值和煅烧温度对前驱体物相组成、形貌、振实密度和元素组成以及对正极材料微结构和电化学性能的影响。结果表明,随着pH值从9升高至11,前驱体振实密度逐渐增大,适当的增加pH值有助于Mn的沉淀;随着煅烧温度的升高,I(003)/I(104)比值呈现先升高而后减小特征,在煅烧温度为850℃时取得I(003)/I(104)最大值,此时的正极材料中阳离子混排程度最小;随着煅烧温度升高,正极材料试样的颗粒尺寸不断增大,颗粒之间的团聚程度减小,充电容量逐渐减小,放电容量先增加而后减小,在煅烧温度为850℃时取得最大的放电容量和最佳的倍率性能。  相似文献   

4.
Ce4+掺杂对LiFePO4/C正极极材料微观结构和性能的影响   总被引:1,自引:1,他引:0  
采用碳热还原法合成了LiFe1-2xCexPO4/C(0≤x≤0.03)锂离子电池正极材料。利用X射线衍射、扫描电镜、恒流充放电、循环伏安法等手段对Ce4+掺杂前后磷酸铁锂正极材料的结构和电化学性能进行了表征。结果表明,随着Ce4+掺入量的增加,LiiFe1-2xCerPO4/C材料的电化学性能,特别是较高倍率(5~1...  相似文献   

5.
采用辐照凝胶法制备了锂离子电池正极用LiNi1/3Co1/3Mn1/3O2粉体材料。采用XRD、SEM和电化学充放电测试对制备材料的结构和性能进行了表征。结果表明:900℃制得的样品具有较好的层状结构,结晶性适中,电化学性能优异:其首次放电容量高达184mA·h/g(2.80~4.50V,C/10),30次循环后的容量保持率为87.4%,表现出较好的充放电容量和循环性能,较之850,950℃煅烧样品具有最小的交流阻抗和直流阻抗。  相似文献   

6.
单晶硅脆性微裂纹的透射电镜观察   总被引:2,自引:0,他引:2  
Rice和Thomson[1]认为,如裂纹发射位错比解理扩展更困难,则裂纹解理扩展从而脆断。否则裂纹就钝化而韧断,故他们认为脆性裂纹扩展前不发射位错。实验工作已证明[2,3]通过位错塞积模型可以形成脆性(解理)裂纹核,并研究了裂纹发射位错以及裂纹解理扩展的竞争过程。而有关室温下单晶硅的裂纹形核和位错组态则报道较少,由于其性能各向异性、缺陷少,容易避免或减少其他微观缺陷对研究的影响。本实验用显微压痕法可以诱发微裂纹产生,并使材料局部形变和断裂。实验用单晶硅尺寸为5mm×4mm×1mm,依次打磨、抛光、清洗后用HD-1000型维氏显微硬度计…  相似文献   

7.
随着电子产品的普及,对锂离子电池的可逆容量、倍率充放电能力和循环稳定性提出了更高的要求。石墨烯由于其独特的电子共轭态和单一的原子层结构,具有优越的电子迁移性、大的表面积和良好的热和化学稳定性。因此,众多研究者致力于借助石墨烯的独有特性来改善锂离子电池正极和负极材料的综合电化学性能。本文对石墨烯在锂离子电池正负极材料中的应用情况以及面临的主要问题做了简要综述。  相似文献   

8.
采用碳酸盐共沉淀法合成了Ni0.4Co0.2Mn0.4CO3前驱体,然后以Ni0.4Co0.2MnCO3和LiOH为原料,合成出了层状锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2.通过XRD,SEM和电化学测试对LiN0.4Co0.2Mn0.4O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃下烧结12 h所得到的样品,以0.2 c放电,其首次放电容量151 mAh·g-1,循环30次后容量为138 mAh·g-1,电化学性能好.  相似文献   

9.
锂离子电池正极材料纳米LiFePO_4   总被引:1,自引:0,他引:1  
综述了LiFePO4的晶体结构、充放电机理、电化学性能、存在问题以及纳米技术近年来在LiFePO4中应用的最新进展。纳米LiFePO4的制备方法主要有高温固相反应法、水热合成法、溶胶凝胶法、微波合成法等。材料的粒径大小及分布、离子和电子的传导能力对产品的电化学性能影响较大,在制备时采用惰性气氛、掺杂改性以及控制晶粒的生长尺寸是关键,电极材料的微纳米化对锂离子电池的电化学性能和循环性能的改善有着显著的意义,展望了纳米正极材料LiFePO4用于锂离子电池的未来前景。  相似文献   

10.
简单介绍了目前市场应用锂离子电池正极材料的研究热点和最新成果,重点综述了各种锂离子电池正极材料的晶格结构、性能特点及缺陷,并针对各种正极材料的性能特点与成果总结了该材料未来的发展趋势。  相似文献   

11.
采用湿法球磨制备了锂离子电池用混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4。通过X射线衍射(XRD)和扫描电镜(SEM)表征了材料的结构和形貌,采用恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)方法研究了混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的电化学性能。结果表明:混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的晶体结构完好,碳包覆的纳米LiFePO4颗粒较好地包覆在LiNi0.5Co0.2Mn0.3O2表面。含质量分数15% LiFePO4的混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4电化学性能优良,0.2C首次充放电比容量为181.40 mAh?g–1,首次充放电效率为90.79%;1.0C循环50次后放电比容量为169.89 mAh?g–1,容量保持率为97.80%;3.0C循环5次后的放电比容量为162.22 mAh?g–1,容量保持率仍有89.43%;60 ℃高温存储7 d后,容量保持率和容量恢复率分别为86.48%和97.32%。  相似文献   

12.
富锂锰基正极材料由于其高理论比容量和较高的工作电压深受人们的青睐,然而循环稳定性差、电压衰减严重和倍率性能差等一系列问题限制了其在锂离子电池中的商业应用。为了改善其电化学性能,利用共沉淀-煅烧法成功制备了不同摩尔量钼元素掺杂的富锂锰基正极材料Li_(1.2)[Mn_(0.54-)_xNi_(0.13)Co_(0.13)Mo_x]O_2(x=0,0.01,0.02,0.03,0.04)。钼元素主要取代富锂材料Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2结构中的锰位,由XRD衍射结果可知,钼元素的掺杂保持了材料本体的晶体结构。富锂材料经掺杂改性表现出优异的电化学性能,Li_(1.2)[Mn_(0.51)Ni_(0.13)Co_(0.13)Mo_(0.03)]O_2在0.5C倍率下循环100圈的放电比容量达到200.6 mAh/g,容量保持率为89.27%;Li_(1.2)[Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)]O_2的首圈库伦效率由74.41%提高到81.47%。这主要是由于钼的掺入抑制了晶格氧的脱出,提高了材料的结构稳定性。电化学阻抗测试也进一步表明钼掺杂可以有效提高材料的导电性和界面电化学反应活性。  相似文献   

13.
在空气中通过固相烧结合成LiNi_(0.66)Co_(0.34)O_2锂离子正极材料,利用XRD,SEM,TEM以及恒流充放电测试等手段,探究了合成温度对正极材料的晶体结构和电性能的影响。不同温度下制备的镍钴酸锂,具有相同的菱面体点阵结构,空间群是R-3m。750℃合成制备的LiNi_(0.66)Co_(0.34)O_2,结晶较完全,层状结构较好,样品颗粒大小均匀。其组装电池首次放电比容量为155 m Ah/g,5次充放电后表现出较好的循环性能。  相似文献   

14.
硅藻土作为一种自然材料,拥有很多优异的理化特性。介绍了如何从硅藻土中提取出高纯度SiO_2,并用金属热还原法制备出多孔硅,将其与商业硅进行对比研究。同时采用溶剂热法制备了SiO_2/TiO_2复合材料和球磨法制备SiO/TiO_2复合材料,分别对这三种材料进行粉末衍射、扫描电镜等表征。然后将这三类材料作为锂离子电池的负极材料,以锂片作为正极制作锂离子半电池,并对锂离子半电池的循环稳定性,恒流充放电等电化学性能进行表征。结果表明,制备的单质硅具有孔道结构,电池的循环性能比商业硅好。将本实验所用的三类负极材料进行比较可以发现:在首次充放电容量方面,硅和SiO/TiO_2/Mg复合材料明显高于SiO_2/TiO_2复合材料;在循环稳定性方面,复合材料的循环性能明显高于多孔硅,SiO_2/TiO_2复合材料处于绝对领先地位。  相似文献   

15.
锂离子电池正极材料研究进展   总被引:2,自引:0,他引:2  
主要介绍了传统锂离子电池正极材料的改性研究和新型锂离子电池正极材料的研究现状和发展方向。重点综述了正硅酸盐Li2MSiO4(M=Fe,Mn)类正极材料,含V的正极材料,有机物正极材料以及其他新型锂离子电池正极材料的研究现状和性能改进方法。  相似文献   

16.
以LiFePO_4为正极材料制备不同电极涂层厚度的扣式半电池,利用恒电流充放电、循环伏安、交流阻抗等测试手段对电池电化学性能进行了测试,探讨了涂层厚度对电池充放电性能、循环性能、阻抗等的影响,并结合阻抗谱图拟合分析Li~+在极片内的扩散速率,揭示了涂层厚度影响电化学性能的作用机制。研究结果表明:涂层厚度增加,一方面使得锂离子的传递距离加长,另一方面在同等压实压力作用下得到的涂层孔隙率有所增加,造成实际传质路径减小,因此存在最佳厚度以实现最优电化学性能。在实验研究范围内,当涂覆湿膜厚度为120μm时,锂离子表观扩散系数达1.76×10~(-12 )cm~2/s,表现出最优的电化学性能,1C的充放电倍率下,首次放电比容量可达145.8 mAh/g。  相似文献   

17.
氮化镓薄膜在蓝宝石、碳化硅和单晶硅等衬底上的异质生长会不可避免的产生高密度的(贯穿)位错(high-density threading dislocation)。本文首先介绍常见的刃型和螺型位错及其表征手段,随之结合国际上的学术研究案例,展开讨论了位错对于氮化镓基器件(如LED和HEMT)的光学性能(非辐射复合)以及电学性能(电荷散射及陷阱能级)的影响机制。  相似文献   

18.
从磷酸铁(FePO_4)的晶体结构和充放电机理出发,综述了不同结构的磷酸铁的电化学性能差异,并对其充放电机理进行了分析。叙述了不同制备方法得到FePO_4的电化学性能,并对制备方法的优缺点进行了对比。同时,论述了改性手段对FePO_4电化学性能的影响,并对FePO_4作为锂离子电池正极材料的未来发展方向作出了展望。  相似文献   

19.
作为锂空气电池的关键组成部分之一,正极材料性质对锂空气电池的性能起到重要影响。以CNT为碳载体,以α-MnO_2为催化剂,制备CNT/α-MnO_2复合电极作为电池正极。通过恒流定容充放电测试、深度充放电测试、循环伏安测试、电化学阻抗谱测试和扫描电镜测试,研究CNT/α-MnO_2复合正极材料对锂空气电池性能的影响,并获得最优电极材料配比。研究表明:制备的CNT/α-MnO_2复合电极表现出高循环稳定性和高催化活性,显著提升了锂空气电池的性能;当正极材料中CNT与α-MnO_2的质量比为3∶6时,装备CNT/α-MnO_2复合正极的锂空气电池表现出最佳性能,其循环次数高达170次。  相似文献   

20.
液相还原法结合高温烧结制备正极材料LiFePO4/C   总被引:1,自引:1,他引:0  
以LiOH·H2O为锂源,草酸(H2C2O4·2H2O)为还原剂,采用液相还原法制得LiFePO4的前驱体,再结合短时间高温烧结,制备了锂离子电池正极材料LiFePO4/C.研究了不同碳源、FePO4·xH2O(x=0,2,4)以及不同烧结时间对所制备LiFePO4/C正极材料电化学性能的影响.结果表明,最佳制备条件是...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号