首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, sol–gel derived Fe–TiO2 anatase nanoparticles with varying concentrations of Ti(1–x)FexO2 (x = 0%, 1%, 5%, 10%) were prepared. The structural, morphological, and optical properties of prepared samples were studied. X-ray diffraction (XRD) patterns show the formation of pure anatase phase. The mean crystallite size of Fe–TiO2 decreases with increase in the concentration of Fe. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the presence of Ti–O vibrational band for all the samples. In Raman spectrum, peak broadening and red shifting linked with Eg ∼144 cm–1 divulge the Fe substitution at Ti sites into host lattice structure. Photoluminescence (PL) spectra verified nine peaks related to near band-edge emission and various defect states. The UV–vis diffuse reflectance spectra represent redshift and reduction in the bandgap energy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations show that the size of the grains decreases with increase in Fe doping concentration. The study shows that Fe-doped TiO2 anatase phase nanoparticles are suitable for photocatalytic activity and solar cell applications.  相似文献   

2.
Fe3+ doped TiO2 deposited with Au (Au/Fe–TiO2) was successfully prepared with an attempt to extend light absorption of TiO2 into the visible region and reduce the rapid recombination of electrons and holes. The samples were characterized by X-ray diffraction (XRD), N2 physical adsorption, Raman spectroscopy, atomic absorption flame emission spectroscopy (AAS), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectra. The photocatalytic activities of the samples were evaluated for the degradation of 2,4-chlorophenol in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. The results of XRD, XPS and high-resolution transmission electron microscopy (HRTEM) analysis indicated that Fe3+ substituted for Ti4+ in the lattice of TiO2, Au existed as Au0 on the surface of the photocatalyst and the mean particle size of Au was 8 nm. Diffuse reflectance measurements showed an extension of light absorption into the visible region for Au/Fe–TiO2, and PL analysis indicated that the electron–hole recombination rate has been effectively inhibited when Au deposited on the surface of Fe-doped TiO2. Compared with Fe doped TiO2 sample and Au deposited TiO2 sample, the Au/Fe–TiO2 photocatalyst exhibited excellent visible light and UV light activity and the synergistic effects of Fe3+ and Au was responsible for improving the photocatalytic activity.  相似文献   

3.
Titanium dioxide is a wide band gap (3.2 eV) semiconductor which is photo-active when irradiated with UV light. For wider scale use of TiO2 as a photocatalyst, its activity needs to be extended to the visible light region (constituting 45% of total incident solar energy). A diffusion flame aerosol reactor (FLAR) with an oxygen lean environment in the particle formation zone has been used to synthesize oxygen deficient titanium suboxide (TiOx with x < 2) nanoparticles. Using a standard-based electron energy loss spectroscopy (EELS) technique, the non-stoichiometry (x in TiOx) in the flame synthesized particles has been quantified with high accuracy (uncertainty less than 3%). Under an oxygen lean environment in the particle formation zone, the non-stoichiometry in the TiOx particles is a function of the flame temperature. The value of x in the flame synthesized TiOx nanoparticles is in the range of 1.88 < x < 1.94. Diffuse reflectance spectra confirmed that the oxygen deficient TiOx particles absorbed visible light. Visible light activity of the TiOx particles is demonstrated by photocatalytic degradation of methyl orange solution under visible light illumination.  相似文献   

4.
《Ceramics International》2016,42(14):15747-15755
Zirconium doped nickel cobalt ferrite (ZrxCo0.8−xNi0.2−xFe2O4) nanoparticles and ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposites were synthesized by a cheap and facile co-precipitation method. Annealing was done at 750 °C for 6.5 h. Spinel cubic structure of prepared nanoparticles was confirmed by X-ray powder diffraction (XRD) technique. Crystalline size of nanoparticles was observed in the range of 18–27 nm. Graphene was synthesized by Hummer's method. Formation of rGO was confirmed by UV-visible spectroscopy (UV-vis) and XRD. ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposites were prepared by ultra-sonication route. Grain size of nanoparticles and dispersion of nanoparticles between rGO layers was determined by Scanning electron microscopy (SEM). In application studies of nanoparticles and their nanocomposites, photocatalytic efficiency of nanoparticles under visible light irradiation was observed by degradation of methylene blue. Charge transfer resistance was measured by electrochemical impedance spectroscopy (EIS) and the variation in dc electrical resistivity was analyzed by room temperature current voltage characteristics (I-V). Dielectric constant was also evaluated in frequency range from 1 MHz to 3 GHz. All these investigations confirmed the possible utilization of these materials for a variety of applications such as visible light photocatalysis, high frequency devices fabrication etc.  相似文献   

5.
An effort was made not only to demonstrate the performance of the self-cleaning coatings on building materials such as ceramic glazed tiles and glass windows, but also to understand the fundamental issues that are still alive in the field of self-cleaning surfaces based on photocatalysis. Nano TiO2 transparent thin films were generated by dip, spray and flow coating method. The present results indicate that the inconsistent results in the self-cleaning studies may be due to the effect of aggregation of model pollutant (methylene blue) dye on TiO2 surface. The effect of aliovalent metal ion (Ni2+, Fe3+, Nb5+) doping on phase formation, polymorphic transition, visible light absorbance and optical transparency of TiO2 film were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV visible absorption spectroscopy. The improved visible light activity of doped TiO2 thin film was correlated to the Ti(Ni/Fe)O3 phase formation, UV and visible light absorbance, variation in the optical energy band gap and the probable light scattering associated with grain size.  相似文献   

6.
《Ceramics International》2016,42(12):13459-13463
In this study the Mn1–2xZrxFe2−yNiyO4 nanoparticles fabricated by co-precipitation technique were investigated. Thermo-gravimetric analysis (TGA) exhibited the annealing temperature of the nanoparticles ~990 °C. Cubic spinel structure of Mn1–2xZrxFe2−yNiyO4 nanoparticles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. Crystallite size was calculated by XRD data and found in the range of 32–58 nm. Photocatalytic activity of Mn0.92Zr0.04Fe1.88Ni0.12O4/graphene nanocomposites was tested by degrading methylene blue (MB) under visible light irradiation. The MB was almost completely degraded in the presence of Mn0.92Zr0.04Fe1.88Ni0.12O4-graphene nanocomposites under visible light irradiation. Dielectric parameters were also investigated in the frequency range 1×106–3×109 Hz. An overall decrease in the values of dielectric constant, dielectric loss and tangent loss was observed on account of the substitution of Zr and Ni with Mn and Fe cations.  相似文献   

7.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

8.
《Ceramics International》2020,46(6):7346-7354
[Mn0.5Zn0.5](EuxNdxFe2-2x)O4 ferrite nanoparticles (FNP) were obtained by ultrasonic (USM) and sol-gel (SGM) methods. It was observed that SGM allows us to produce nanoparticles with the average crystal size of 10–40 nm and the specific surface area of 5–7.5 × 104 m2/g with a strong correlation between the chemical composition (x) and the crystal size distribution. At the same time using USM, we obtained nanoparticles with the average crystal size of 3–15 nm and the specific surface area of 1.5–1.7 × 105 m2/g without a strong correlation between Eu/Nd concentration and the crystal size distribution. The specific surface area and average crystal size are the main factors determining the antiproliferative activity of FNP. The anti-cancer activity of FNP was investigated both on cancerous cells, human adenocarcinoma cells and human colorectal carcinoma cells. It was established that samples obtained using USM were more effective in producing cytotoxic effects on cancer cells. Thus, we confirm a strong correlation between the main microstructure parameters for [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 ferrite nanoparticles.  相似文献   

9.
《Ceramics International》2016,42(4):5113-5122
TiO2 nanoparticles are currently used as coating for self-cleaning building products. In order to achieve high self-cleaning efficiency for outdoor applications, it is important that titania is present as anatase phase. Moreover, it is desirable that the particle sizes are in nano-range, so that a large enough surface area is available for enhanced catalytic performance. In this work, TiO2 nanoparticles doped with 0–5 mol% Nb2O5 were synthesized by co-precipitation. Nb2O5 postponed the anatase to rutile transformation of TiO2 by about 200 °C, such that after calcination at 700 °C, no rutile was detected for 5 mol% Nb2O5-doped TiO2, while undoped TiO2 presented 90 wt% of the rutile phase. A systematic decreasing on crystallite size and increasing on specific surface area of TiO2 were observed with higher concentration of Nb2O5 dopant. Photocatalytic activity of anatase polymorph was measured by the decomposition rate of methylene blue under ultraviolet and daylight illumination and compared to commercial standard catalyst (P25). The results showed enhanced catalysis under UV and visible light for Nb2O5-doped TiO2 as compared to pure TiO2. In addition, 5 mol% Nb2O5-doped TiO2 presented higher photocatalytic activity than P25 under visible light. The enhanced performance was attributed to surface chemistry change associated with a slight shift in the band gap.  相似文献   

10.
A series of iron-doped anatase TiO2 nanotubes (Fe/TiO2 NTs) catalysts with iron concentrations ranging from 0.88 to 7.00 wt% were prepared by an ultrasonic-assisted sol-hydrothermal process. The structures and the properties of the fabricated Fe/TiO2 NTs were characterized in detail and photocatalytic activity was examined using a reactive brilliant red X-3B aqueous solution as pollutant under visible light. The lengths of the NTs were determined to range from 20 nm to 100 nm. The incorporation of the iron ions (Fe3+) into the TiO2 nanotubes shifted the photon absorbing zone from the ultraviolet (UV) to the visible wavelengths, reducing the band gap energy from 3.2 to 2.75 eV. The photocatalytic activity of the Fe/TiO2 NTs was 2–4 times higher than the values measured for the pure TiO2 nanotubes.  相似文献   

11.
《Ceramics International》2017,43(5):3975-3980
The aim of this research is to enhance the photocatalytic activity of TiO2 nanoparticles for the UV–visible light by multiple-doping with Iridium, carbon and nitrogen. The tridoped TiO2 photocatalyst were prepared by wet chemical method, and characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible light diffuse reflection spectroscopy and room temperature photoluminescence spectroscopy. Besides, the photocatalytic H2 evolution performance of Ir-C-N tridoped TiO2 under UV–visible light irradiation was evaluated. It was found that Ir existed as Ir4+ by substituting Ti in the lattice of TiO2; meanwhile, C and N were also incorporated into the surface of TiO2 nanoparticles in interstitial mode. Meanwhile, Ir-C-N tridoping extended the absorption of TiO2 into the visible light region and narrowed its band gap to ~3.0 eV, resulting in enhanced photocatalytic H2 evolution under UV–visible light irradiation. This could be attributed to narrow band gap and proper electronic structure of TiO2 after Ir-C-N tridoping.  相似文献   

12.
A series of Fe-doped SH/TiO2 mesoporous photocatalysts have been firstly prepared by one-pot method using P123 as structure-directing agent. This bifunctionalized mesoporous TiO2 possesses perfect anatase crystal structure and high surface area. The surface area of Fe-doped SH/TiO2 mesoporous material is 4 times higher than that of P25. Based on the EPR results, it was found that trivalent Fe ions exist at low spin state and substitutes a part of Ti4+ ions into TiO2 lattice. Fe-dropping in TiO2 extends the adsorption band side of the resulting material to about 600 nm. Much high photocatalytic activity in the degradation of phenanthrene was obtained on the bifunctionalized mesoporous TiO2 under visible light irradiation (λ > 420 nm), which is 6 times higher than that of pristine mesoporous TiO2. The enhancement in the photocatalytic activity of bifunctionalized TiO2 is ascribed to the extended absorption to visible light and strong interaction between SH-groups and PHE molecules.  相似文献   

13.
In this work, the Er3+:YAlO3/Fe-doped TiO2 composite, a high efficient TiO2-based photocatalyst, was synthesized by ultrasonic dispersion and liquid boil methods. Among which, the Er3+:YAlO3 is a kind of upconversion luminescence agent, which was prepared by nitrate-citric acid method. It can emit ultraviolet light under visible light excitation. The Er3+:YAlO3/Fe-doped TiO2 composite was characterized by X-ray diffraction and UV–vis spectral techniques. The degradation of Acid Red B dye was used to evaluate the photocatalytic activity of the Er3+:YAlO3/Fe-doped TiO2 composite under solar light irradiation. It was found that the photocatalytic activity of Er3+:YAlO3/Fe-doped TiO2 composite was much higher than that for the similar system with only Fe-doped TiO2. And the influencing factors, such as Er3+:YAlO3 content, irradiation time, initial concentration of Acid Red B, addition amount of Er3+:YAlO3/Fe-doped TiO2 and NaCl, on the photocatalytic degradation were also investigated. The Er3+:YAlO3 as upconversion luminescence agent can elevate the photocatalytic activity of Fe-doped TiO2 powder. Moreover, the Fe2+ ion can restrain the recombination of photogenerated electrons and holes. Thus, this Er3+:YAlO3/Fe-doped TiO2 composite is a useful material for the detoxification of wastewater because it can efficiently utilize solar light by converting visible light into ultraviolet light.  相似文献   

14.
《Ceramics International》2021,47(19):27524-27534
Designing an efficient heteronanostructure array for surface-enhanced Raman scattering (SERS) to enable ultrasensitive and reproducible detection of analytes and degrading organic contaminants provides new perspectives for chemical and biological detection at trace levels and environmental remediation. Here, we design and fabricate a heterostructure consisting of Ag nanoparticles (NPs) in-situ grown on high-density arrays of vertical TiO2 nanorods (NRs) (denoted Ag/TiO2 NRs). As a result, compared with pristine TiO2 NRs, the as-obtained Ag/TiO2 NR substrate possesses a SERS activity for detecting rhodamine 6G (R6G) with a detection limit as low as 10−12 M and an enhancement factor up to 1.2 × 1010. In addition, the substrate exhibits the highest degradation rates of R6G of 82% under illumination with visible light and an excellent self-cleaning effect under UV-assisted light. Such remarkable enhanced efficacy of the binary Ag/TiO2 NRs nanocomposites may be attributed to the i) appropriate band alignment based on the synergistic effect of Ag decorated on TiO2 NRs; ii) a large adhesion area and the localized surface plasmon resonance (LSPR) of Ag; and iii) high-density and engineering hotspots in the active platform. These properties make the heterostructure Ag/TiO2 NR platform promising candidate for detecting analytes and photocatalytic applications.  相似文献   

15.
《Ceramics International》2023,49(3):4342-4355
The pristine and Ni doped BaNixFe12-xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) NPs have been fabricated via facile microemulsion approach and the impact of dopants was explored based dielectric, optical, structural and the photocatalytic properties of BaNixFe12-xO19 nanoparticles. X-ray diffraction and Raman study confirmed the formation of regular hexagonal geometry with space group P63/mmc with crystallite size in 32–50 nm range. Functional groups were identified using FTIR analysis. The remanence (Pr), saturation polarization (Ps) and coercivity (Hc) was explored by P-E loop analysis and the value of Pr and Ps was enhanced with the concentration of dopant. According to PL spectra, highly doped materials had a higher charge separation (e?- h+) and low recombination rate, which resulted in higher photocatalytic degradation activity of fabricated nanomaterials. The optical band gap was found to be 1.78 eV versus undoped (2.60 eV for pristine BaFe12O19). Due to polarizations, the dielectric loss, dielectric constant and tangent loss values were declined, while AC conductivity was enhanced. Photocatalytic performance of doped and undoped samples under visible right irradiation was studied for crystal violet dye. For 100 min exposure to visible light, the highly doped catalyst exhibits 97% degradation versus 60% in case of pristine this is attributed to efficient electron-hole pair separation. Furthermore, quenching effect of different scavengers indicated that hydroxyl radical had a main role, and e? or h+ played a minimal role in CV dye degradation. The enhanced properties due to doping make BaNixFe12-xO19 a potential candidate for photocatalytic applications under visible light irradiation.  相似文献   

16.
《Ceramics International》2020,46(17):26675-26681
DyCrxFe(1-x)O3 (0 ≤ x ≥ 0.4) nanoparticles were prepared using facile chemical route. Structural and morphological evaluation was carried out using X-ray diffraction (XRD) and electron microscopy. Formation of orthorhombic DyFeO3 nanoparticles was confirmed by XRD with crystallite size of 9–10 nm. FESEM images revealed nearly spherical morphology of the fabricated nanoparticles. Energy dispersive X-ray (EDX) technique was employed to confirm the presence of Dy, Cr, Fe and O elements in DyCrxFe(1-x)O3 nanoparticles. FTIR studies illustrated the presence of characteristics stretching and bending vibrations. UV–visible spectroscopy was used to analyze the photocatalytic performance of the DyFeO3 and Cr-substituted DyFeO3 nanoparticles and optical band gap measurements. Photocatalytic activities of the prepared substituted and un-substituted DyFeO3 nanoparticles were conducted using three different dyes. These dyes were (i) methyl orange, (ii) rhodamine B and (iii) methylene blue. Lower band gap and higher photocatalytic performance was observed for Cr-substituted DyFeO3 nanoparticles with methylene blue dye.  相似文献   

17.
《Ceramics International》2020,46(15):23651-23661
Multifunctional nanocoatings with mechanical robustness, high transparence, antifogging and self-cleaning have attracted significant attention because of their wide applications in glass-related fields. However, it is still very difficult to construct this kind of multifunctional nanocoatings due to the requirement of their comprehensive structure parameters. In this work, we successfully fabricated robust transparent antifogging self-cleaning nanocoatings by employing dendritic porous silica nanoparticles (DPSNs) evenly loaded with 2–3 nm of small TiO2 nanoparticles (NPs) as a building block. A series of DPSNs@X% TiO2 nanocomposites with tunable weight ratios (X%) of TiO2/DPSNs from 10% to 60% were firstly prepared by controlling the growth of TiO2 on the heterogeneous interface of center-radial large pores of DPSNs, followed by calcination. Noteworthily, DPSNs@10% TiO2 exhibited highest photocatalytic and antibacterial performance mainly due to uniform distribution of TiO2 NPs, their small sizes of 2–3 nm and center-radial pore. Therefore, DPSNs@10% TiO2 was chosen as an optimized building block and combined with acid-catalyzed silica sol (ACSS) to develop an excellent suspension for multifunctional nanocoatings. The obtained glass slide with the optimal nanocoating showed photocatalytic self-cleaning behavior, high transparence, hydrophilic (WCA = 6.2°) antifogging, and high mechanical robustness, which can withstand 4B tape adhesion test and 3H pencil scratching test. This work provides an important exploration for developing multifunctional nanocoatings.  相似文献   

18.
A novel TiO2  xNx/BN composite photocatalyst was prepared via a facile method using melamine–boron acid adducts (M·2B) and tetrabutyl titanate as reactants. The morphological results confirmed that nitrogen-doped TiO2 nanoparticles were uniformly coated on the surface of porous BN fibers. A red shift of absorption edge from 400 nm (pure TiO2) to 520 nm (TiO2  xNx/BN composites) was observed in their UV–Vis light absorption spectra. The TiO2  xNx/BN photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) and the highest photocatalytic degradation efficiency reached 97.8% under visible light irradiation for 40 min. The mechanism of enhanced photocatalytic activity was finally proposed.  相似文献   

19.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

20.
The synergic effect of cation doping and phase composition for the further improvement of the photocatalytic activity of TiO2 under visible light is reported for the first time. Fe3 + and Sn4 + co-doped TiO2 with optimized phase composition were synthesized through a simple soft-chemical solution method. The visible-light-driven photocatalytic activity of Fe3 + and Sn4 + co-doped TiO2 was 5 times of that of Evonik P25 TiO2 using degradation of methylene blue as model reaction. The synthesized photocatalysts were characterized by powder X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, 119Sn Mössbauer spectroscopy, and X-ray absorption fine structure spectroscopy. It is indicated that Sn4 + doping can facilitate the phase transition from anatase to rutile. The different ratios of anatase and rutile can be achieved by tuning the amount of Sn4 + doped into the lattice. Furthermore, the doping of Sn4 + into TiO2 lattice can stabilize the phase composition when Fe3 + is co-doped. In the Fe3 + and Sn4 + co-doped TiO2, Sn4 + is mainly used to tune and stabilize the phase composition of TiO2 and Fe3 + acts as a doping cation to narrow the band gap of TiO2. Both band gap and phase composition of TiO2 can be tuned effectively by the simultaneous introduction of Fe3 + and Sn4 +. The synergic effect of optimized phase composition (anatase/rutile = 25/75) and narrowed band gap should be the two main reasons for the promoted photocatalytic activity of TiO2 under visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号