共查询到20条相似文献,搜索用时 0 毫秒
1.
脚本事件预测需要考虑两类信息来源:事件间的关联与事件内的交互。针对于事件间的关联,采用门控图神经网络对其进行建模。而对于事件内的交互,采用四元数对事件进行表征,接着通过四元数的哈密顿乘积来捕捉事件4个组成部分之间的交互。提出结合四元数和门控图神经网络来学习事件表示,它既考虑了外部事件图的交互作用,又考虑了事件内部的依赖关系。得到事件表示后,利用注意机制学习上下文事件表示和每个候选上下文表示的相对权值。然后通过权重计算上下文事件表示的和,再计算其与候选事件表示的欧氏距离。最后选择距离最小的候选事件作为正确的候选事件。在纽约时报语库上进行了实验,结果表明,通过多项选择叙事完形填空评价,本文的模型优于现有的基线模型 相似文献
2.
句子级别细粒度的事件检测任务旨在对触发词进行识别与分类。针对现有事件检测方法中存在的过度平滑及缺乏依存类型信息的问题,提出了一种基于图卷积网络融合依存信息的事件检测方法。该模型首先使用双向长短期记忆网络对句子进行编码,同时根据依存分析构建多阶句法图和依存句法图;然后利用图卷积网络融合句子的依存信息,从而有效地利用多跳信息和依存标签信息。在自动文本抽取数据集上进行实验,在触发词识别和分类这两个子任务中分别取得了81.7%和78.6%的F1值。结果显示,提出的方法能更加有效地捕获句子中的事件信息,提升了事件检测的效果。 相似文献
3.
目的 自动检测谣言至关重要,目前已有多种谣言检测方法,但存在以下两点局限:1)只考虑文本内容,忽略了可用于判断谣言的辅助多模态信息;2)只关注时间序列模型捕捉谣言事件的时间特征,没有很好地研究事件的局部信息和全局信息。为了克服这些局限性,有效利用多模态帖子信息并联合多种编码策略构建每个新闻事件的表示,本文提出一种新颖的基于多模态多层次事件网络的社交媒体谣言检测方法。方法 通过一个多模态的帖子嵌入层,同时利用文本内容和视觉内容;将多模态的帖子嵌入向量送入多层次事件编码网络,联合使用多种编码策略,以由粗到细的方式描述事件特征。结果 在Twitter和Pheme数据集上的大量实验表明,本文提出的多模态多层次事件网络模型比现有的SVM-TS(support vector machine—time structure)、CNN(convolutional neural network)、GRU(gated recurrent unit)、CallAtRumors和MKEMN(multimodal knowledge-aware event memory network)等方法在准确率上提升了4 %以上。结论 本文提出的谣言检测模型,对每个事件的全局、时间和局部信息进行建模,提升了谣言检测的性能。 相似文献
4.
使用神经网络进行漏洞检测的方案大多基于传统自然语言处理的思路,将源代码当作序列样本处理,忽视了代码中所具有的结构性特征,从而遗漏了可能存在的漏洞.提出了一种基于图神经网络的代码漏洞检测方法,通过中间语言的控制流图特征,实现了函数级别的智能化代码漏洞检测.首先,将源代码编译为中间表示,进而提取其包含结构信息的控制流图,同... 相似文献
5.
Bin Li Zheng Zhou Dejian Li Weixia Zou 《Journal of Network and Computer Applications》2011,34(6):1894-1902
Ultra-wideband (UWB) has been widely recommended for significant commercial and military applications. However, the well-derived coherent structures for UWB signal detection are either computationally complex or hardware impractical in the presence of the intensive multipath propagations. In this article, based on the nonparametric Parzen window estimator and the probabilistic neural networks, we suggest a low-complexity and noncoherent UWB detector in the context of distributed wireless sensor networks (WSNs). A novel characteristic spectrum is firstly developed through a sequence of blind signal transforms. Then, from a pattern recognition perspective, four features are extracted from it to fully exploit the inherent property of UWB multipath signals. The established feature space is further mapped into a two-dimensional plane by feature combination in order to simplify algorithm complexity. Consequently, UWB signal detection is formulated to recognize the received patterns in this formed 2-D feature plane. With the excellent capability of fast convergence and parallel implementation, the Parzen Probabilistic Neural Network (PPNN) is introduced to estimate a posteriori probability of the developed patterns. Based on the underlying Bayesian rule of PPNN, the asymptotical optimal decision bound is finally determined in the feature plane. Numerical simulations also validate the advantages of our proposed algorithm. 相似文献
6.
黄旭 《计算机工程与科学》2015,37(4):711-718
提出了一种适用于无线传感器网络WSN的故障检测方法,该方法运用改进的递归神经网络MRNN为WSN的节点、节点的动态特性以及节点间的关系建立相关模型,对WSN节点进行识别和故障检测。MRNN的输入选择建模节点的先前输出值及其邻居节点的当前及先前输出值,模型基于一种新的改进的反向传播型神经网络,该神经网络的输入以及传感器网络的拓扑结构基于通用的非线性传感器模型。仿真实验将MRNN方法与卡尔曼滤波法进行了全面的比较。实验表明,MRNN在置信因子较小的情况下与卡尔曼滤波方法相比有较高的故障检测精度。 相似文献
7.
根据细胞神经网络(CNN)数学模型,提出一种新的彩色图像边缘检测方法。
新方法继承了CNN 的优点,解决了CNN 现有算法不能直接检测彩色图像边缘的问题。该
方法充分利用图像中的颜色信息,通过欧几里得距离度量像素之间的差异,使CNN 方程可
以在RGB 彩色空间中进行运算。对CNN 模板进行理论分析和鲁棒性研究,提出一个实现
彩色图像边缘检测功能要求的CNN 鲁棒性定理,为设计相应的CNN 模板参数提供了解析
判据。实验结果表明,该方法可以对彩色图像进行有效的边缘提取,定量评价验证了CNN
边缘检测定位准确的优点。 相似文献
8.
目的 舰船目标检测是合成孔径雷达(SAR)图像在海事监测领域中的一项重要应用。由于海面微波散射的复杂性,SAR图像中海杂波分布具有非均匀性、非平稳性等特点,传统的基于恒虚警率(CFAR)的SAR图像舰船检测算法难以适应复杂多变的海杂波环境,无法实现实时有效的智能检测任务。鉴于此,本文提出了基于信息几何的SAR图像船舰目标检测方法,旨在分析统计流形及其在参数空间中的几何结构,探讨信息几何在SAR图像目标检测应用中的切入点,从新的角度提升该应用领域的理论与技术水平。方法 首先,运用威布尔分布族对SAR图像中的海杂波进行统计建模,利用最大似然方法估计SAR图像局部邻域像素的分布参数,并将不同参数下的统计分布作为威布尔流形上的不同点;其次,融合高斯分布的费歇耳度量来构造威布尔流形空间中概率分布之间的测度,实现目标与背景区域的差异性表征;最后,利用最大类间方差法,实现SAR图像舰船目标检测。结果 实验和分析表明,相比于传统的基于恒虚警率的检测算法,信息几何方法可以有效地区分舰船目标和海杂波背景,降低虚警率,实现舰船目标显著性表示与检测。结论 由于舰船目标的复杂后向散射特性,如何有效地表征这一差异,是统计类检测算法的关键所在。本文依据信息几何理论,将概率分布族的参数空间视为微分流形,在参数流形上构造合适的黎曼度量,对SAR图像中各像素局部邻域进行测度表征,可以显著性表示目标与背景杂波之间的统计差异,实现舰船目标检测。 相似文献
9.
随着深度学习技术的飞速发展,以Deepfakes为代表的深度伪造技术开始充斥在互联网上的各个角落。Deepfakes借助于生成对抗网络和自动编码器技术,能够轻松替换人脸以及篡改人的表情信息。此类Deepfakes假视频可以制作虚假色情影片、谣言,传播假新闻,甚至影响政治选举,带来的社会影响极其恶劣。然而,针对此类伪造视频的检测技术还远远落后于生成技术,已有的工作都存在一定的局限性,并不能较好地对Deepfakes视频进行检测。本文首先对现有生成和检测工作进行综述,并分析了现有工作的缺陷,然后提出了基于EfficientNet的双流网络检测框架。通过在大规模开源数据集FaceForensics++测试,我们的检测技术可以在检测Deepfakes类假视频上平均准确率达到99%以上,并一定程度提高模型对抗压缩的能力。 相似文献
10.
当前的事件检测模型严重依赖于人工标注的数据,在标注数据规模有限的情况下,事件检测任务中基于完全监督方法的深度学习模型经常会出现过拟合的问题,而基于弱监督学习的使用自动标注数据代替耗时的人工标注数据的方法又常常依赖于复杂的预定义规则。为了解决上述问题,就中文事件检测任务提出了一种基于BERT的混合文本对抗训练(BMAD)方法。所提方法基于数据增强和对抗学习设定了弱监督学习场景,并采用跨度抽取模型来完成事件检测任务。首先,为改善数据不足的问题,采用回译、Mix-Text等数据增强方法来增强数据并为事件检测任务创建弱监督学习场景;然后,使用一种对抗训练机制进行噪声学习,力求最大限度地生成近似真实样本的生成样本,并最终提高整个模型的鲁棒性。在广泛使用的真实数据集自动文档抽取(ACE)2005上进行实验,结果表明相较于NPN、TLNN、HCBNN等算法,所提方法在F1分数上获取了至少0.84个百分点的提升。 相似文献
11.
12.
13.
为解决传统单一传感器式的火灾探测器容易造成火灾报警的漏报和误报的问题,采用多传感器信息融合技术,将温度、烟雾浓度和CO浓度等多个参数相结合,进行综合分析,对火灾进行早期预测。采用可拓神经网络作为数据融合算法,以温度、烟雾浓度、CO气体浓度三个物理参量作为输入,以三种火灾预警等级作为输出。通过仿真分析结果表明:火灾正确识别率很高,达到93.9%以上。同时通过与传统BP神经网络的对比,表明可拓神经网络在数据融合的速度和可靠性上有突出的优势,从而使可拓神经网络实际应用于火灾早期预测成为可能。 相似文献
14.
目的 显著物体检测的目标是提取给定图像中最能吸引人注意的物体或区域,在物体识别、图像显示、物体分割、目标检测等诸多计算机视觉领域中都有广泛应用。已有的基于局部或者全局对比度的显著物体检测方法在处理内容复杂的图像时,容易造成检测失败,其主要原因可以总结为对比度参考区域设置的不合理。为提高显著物体检测的完整性,提出背景驱动的显著物体检测算法,在显著值估计和优化中充分利用背景先验。方法 首先采用卷积神经网络学习图像的背景分布,然后从得到的背景图中分割出背景区域作为对比度计算参考区域来估计区域显著值。最后,为提高区域显著值的一致性,采用基于增强图模型的优化实现区域显著值的扩散,即在传统k-正则图局部连接的基础上,添加与虚拟节点之间的先验连接和背景区域节点之间的非局部连接,实现背景先验信息的嵌入。结果 在公开的ASD、SED、SOD和THUS-10000数据库上进行实验验证,并与9种流行的算法进行对比。本文算法在4个数据库上的平均准确率、查全率、F-measure和MAE指标分别为0.873 6、0.795 2、0.844 1和0.112 2,均优于当前流行的算法。结论 以背景区域作为对比度计算参考区域可以明显提高前景区域的显著值。卷积神经网络可以有效学习图像的背景分布并分割出背景区域。基于增强图模型的优化可以进一步实现显著值在前景和背景区域的扩散,提高区域显著值的一致性,并抑制背景区域的显著性响应。实验结果表明,本文算法能够准确、完整地检测图像的显著区域,适用于复杂图像的显著物体检测或物体分割应用。 相似文献
15.
为获得更好的事件发现和代表性新闻抽取性能,引入数据集代表点采样聚类的视角,研究实现了一种事件发现及表示的集成分析方法。对于给定的新闻流数据,首先引入信息支撑度定义新闻间关系权重和事件关系权重,并通过引入双层近邻传播算法的迭代构建整体时间流上的单向事件内容支撑度网络,实现代表性新闻的分层增量采样,进一步考虑以最大相似度划分策略实现代表性新闻上的整体新闻流数据聚类。实验结果表明,相比于现有相关方法,新方法在大规模新闻流数据上具有显著的计算效率,可提取出新闻流中极有代表性的新闻,以及获得更好的新闻文档聚类质量,其热点事件发现结果与权威机构评选的重大新闻有极高吻合度。 相似文献
16.
图表示学习已成为图深度学习领域的一个研究热点. 大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高. 为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN. 该方法首先通过图同构网络(graph isomorphism network,GIN)对图进行节点特征编码,并使用图核方法对图进行结构编码,进一步利用Nyström方法降低图核矩阵的维度. 其次借助MLP将图核矩阵与图特征矩阵对齐,通过注意力机制将图的特征编码和结构编码进行自适应加权融合,进而得到图的最终特征表示,提升了图结构特征信息的表达能力. 最后在7个公开的图分类数据集上对模型进行了实验评估:与现有图表示模型相比,KerGIN模型能够在图分类准确度上有较大幅度提升,它可以增强GIN对图结构特征信息的表达能力.
相似文献17.
人脸检测在日常生产和应用非常重要。本文提出了一种基于BP神经网络的AdaBoost人脸检测算法。首先,使用BP神经网络代替YCbCr高斯模型建立肤色模型。同时,针对AdaBoost算法提出了一种新的权值更新方法。在权值更新中引入阈值与样本之间的距离。另外权重有一个边界值。最后,利用BP神经网络提取图像中的肤色候选区域,并采用改进的AdaBoost算法对图像中的人脸进行精确检测。实验结果表明,利用BP神经网络和改进的AdaBoost算法的新的解决方案比现有的方法具有更高的精度。 相似文献
18.
提出一种小波网络逆变换,在小波对原始信号进行高频、低频段分解时,分别用小波系数模极大值进行奇数和偶数抽取,得到信号的特征向量。再利用BP神经网络对抽取后的信号逼近训练,得到新的小波系数,然后用逆变换进行信号重构。通过比较重构和原始信号。得到谐波值,再反相注入电网进行补偿。实验结果表明,该算法可以满足电力系统谐波检测的要求。 相似文献
19.
面对不断涌现的安卓恶意应用,虽然大量研究工作采用图神经网络分析代码图实现了准确高效的恶意应用检测,但由于未提供应用内恶意代码的具体位置信息,难以对后续的人工复核工作提供有效帮助.可解释技术的出现为此问题提供了灵活的解决方法,在基于不同类型神经网络及代码特征表示实现的检测模型上展示出了较好的应用前景.本研究聚焦于基于图神经网络的安卓恶意代码检测模型上,使用可解释技术实现安卓恶意代码的准确定位:(1)提出了基于敏感API及多关系图特征的敏感子图提取方法.根据敏感API,控制流逻辑以及函数调用结构三类特征与恶意代码子图分布的关联性,细致刻画恶意代码特征,精简可解释技术关注的代码图规模;(2)提出了基于敏感子图输入的可解释技术定位方法.使用基于扰动原理的可解释技术,在不改变检测模型结构的情况下对代码图边缘进行恶意性评分,为各类基于图神经网络安卓恶意代码检测提供解释定位;(3)设计实验验证敏感子图提取对于与恶意代码特征的刻画效果以及基于敏感子图提取的解释定位效果.实验结果显示,本文的敏感子图提取方法相较于MsDroid固定子图半径的方法更为精确,能够为可解释技术提供高质量的输入;基于此方法改进后得到的可解释技术定位方法相较于GNNExplainer通用解释器及MsDroid定位方法,在保证定位适用性和效率的同时,恶意代码平均定位准确率分别提高了8.8%和2.7%. 相似文献
20.
张梅 《计算机工程与应用》2012,48(16):133-135,167
为了提高语音端点检测的适应性和鲁棒性,提出一种基于小波分析和模糊神经网络的语音端点检测方法。利用小波变换得到语音信号的特征量,以这些特征量为模糊神经网络的输入进行运算,判断出该信号的类别。介绍了信号特征量的提取以及模糊神经网络的模型、学习算法等。实验表明,与传统的检测方法相比,所提出的方法有较好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。 相似文献