首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mode I fatigue crack growth behavior of a fiber reinforced metal matrix composite with weak interfaces is examined. In the longitudinal orientation, matrix cracks initially grow with minimal fiber failure. The tractions exerted by the intact fibers shield the crack tip from the applied stress and reduce the rate of crack growth relative to that in the unreinforced matrix alloy. In some instances, further growth is accompanied by fiber failure and a concomitant loss in crack tip shielding. The measurements are compared with model predictions, incorporating the intrinsic fatigue properties of the matrix and the shielding contributions derived from the intact fibers. The magnitude of the interface sliding stress inferred from the comparisons between experiment and theory is found to be in broad agreement with values measured using alternate techniques. The results also indicate that the interface sliding stress degrades with cyclic sliding, an effect yet to be incorporated in the model. In contrast, the transverse fatigue properties are found to be inferior to those of the monolithic matrix alloy, a consequence of the poor fatigue resistance of the fiber/matrix interface.  相似文献   

2.
《Acta Metallurgica Materialia》1995,43(11):3927-3936
Crack growth in ceramic matrix composites with creeping fibers has been investigated using a time dependent bridging law to describe the effect of fibers bridging a matrix crack. The fibers were assumed to creep linearly and the matrix was assumed to be elastic. Time dependent crack growth was predicted assuming that matrix crack growth occurs when the stress intensity factor at the matrix crack tip reaches a constant critical value. Crack growth rates are presented as a function of crack length and time. Domains of stable and unstable crack growth are outlined. The solutions illustrate that stable crack growth consists of a relatively brief period of decerelation followed by acceleration to large crack lengths, with crack velocity approaching constancy only at loads very near the matrix cracking stress and for very long cracks. Finally, the time needed to grow a long matrix crack is compared with a rough estimate for the time needed to rupture fibers. A transition is expected from life dominated by matrix crack growth at low stress to life dominated by fiber creep rupture after crack growth at higher stresses.  相似文献   

3.
《Acta Metallurgica》1985,33(11):2013-2021
Matrix fracture in brittle-matrix fiber composites is analyzed for composites that exhibit multiple matrix cracking prior to fiber failure and have purely frictional bonding between the fibers and matrix. The stress for matrix cracking is evaluated using a stress intensity approach, in which the influence of the fibers that bridge the matrix crack is represented by closure tractions at the crack surfaces. Long and short cracks are distinguished. Long cracks approach a steady-state configuration, for which the stress intensity analysis and a previous energy balance analysis are shown to predict identical dependence of matrix cracking stress on material properties. A numerical solution and an approximate analytical solution are obtained for smaller cracks and used to estimate the range of crack sizes over which the steady-state solution applies.  相似文献   

4.
《Acta Metallurgica》1987,35(11):2607-2619
A stress intensity approach is used to analyze tensile failure of brittle matrix composites that contain unidirectionally aligned fibers held in place by friction. In general, failure may initiate either by growth of a crack in the matrix, or by fracture of fibers that bridge the matrix crack. Subsequently, these failure processes may continue either unstably or stably with increasing applied stress. Solutions to the fracture mechanics analysis are obtained numerically in normalized form, with one microstructural variable, the normalized fiber strength. The analysis defines transitions between failure mechanisms and provides strength/crack-size relations for each mechanism. Explicit relations are derived for the matrix cracking stress (noncatastrophic failure mode), the condition for transition to a catastrophic failure mode, and the fracture toughness in a region of catastrophic failure, in terms of microstructural properties of the composite.  相似文献   

5.
A study has been made of fatigue crack growth through the magnesium alloy ZE41A and a composite of this alloy reinforced with alumina fibers. Crack growth rates were measured and failure mechanisms characterized for specimens with fibers parallel to the loading axis and for two off-axis orientations. Crack opening displacements and matrix and fiber strains in the vicinity of the crack tip were measured using the stereomaging technique. Crack growth rates through the composite were retarded by the fibers. For the composite with fibers at 22.5 deg to the loading axis, fibers were found to fracture in the composite at the same stress as measured for the fibers alone. Fiber fracture was the dominant growth-controlling mechanism for fibers oriented on and 22.5 deg to the loading axis, and little fiber pullout was observed. However, for crack growth through material with fibers oriented at 45 deg to the loading axis, crack growth was found to exist principally through the interface. Driving forces for cracks in interfaces were determined to be smaller than the applied δK. It was found that approximate fatigue crack growth rates through the composites could be predicted from those through the matrix by adjusting the tensile modulus. The upper and lower bounds of fatigue crack growth rate were also computed for the composite using a micromechanics-based model that incorporated observed failure mechanisms. A. McMINN, formerly with Southwest Research Institute, is with Failure Analysis Associates, Washington, D.C.  相似文献   

6.
Fitness-for-service evaluations of engineered components that are subject to environment assisted cracking (EAC) often require analyses of potentially large crack extensions through regions of variable stress intensity. However, there are few EAC data and models that directly address the effects of variable stress intensity factor on EAC crack growth. The model developed here is used to evaluate stress corrosion cracking (SCC) data that were obtained on a high-strength beta-titanium alloy under conditions of variable crack mouth opening displacement (CMOD) rate. SCC of this Ti alloy in ambient temperature, near-neutral NaCl aqueous solution is thought to be due to hydrogen environment assisted cracking (HEAC). As the model equations developed here do not admit to a closed form solution for crack velocity as a function of applied stress intensity factor, K, a semiquantitative graphical solution is used to rationalize the crack growth data. The analyses support a previous suggestion that the observed crack growth rate behavior can be attributed to the effect of crack tip strain rate on rates of mechanical disruption and repair of an otherwise protective crack tip oxide film. Model elements introduced here to HEAC modeling include (1) an expression relating corrosion-active surface area to crack tip strain rate and repassivation rate, (2) an expression relating the critical grain boundary hydrogen to the applied stress intensity factor, and (3) an expression relating CTSR to both applied and crack advance strain rate components. Intergranular crack advance is modeled assuming diffusive segregation of corrosion-generated hydrogen to grain boundary trap sites causing embrittlement of the fracture process zone (FPZ). The model equations developed here provide a quantitative basis for understanding the physical significance of K-variation effects and, with additional development, will provide an engineering tool for analysis of crack growth in a variable K field.  相似文献   

7.
Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn   总被引:2,自引:0,他引:2  
The kinetics of hydrogen-induced cracking have been studied in the Ti-5Al-2.5Sn titanium alloy having a structure of acicular α platelets in a β matrix. It was observed that the relationship between hydrogen-induced crack growth rate and applied stress intensity can be described by three separable regions of behavior. The crack-growth rate at low stress-intensity levels was found to be exponentially dependent on stress intensity but essentially independent of temperature. The crack-growth rate at intermediate stress-intensity levels was found to be independent of stress intensity but dependent on temperature in such a way that crack-growth rate was controlled by a thermally activated mechanism having an activation energy of 5500 cal per mole and varied as the square root of the hydrogen pressure. The crack-growth rate at stress-intensity levels very near the fracture toughness is presumed to be independent of environment. The results are interpreted to suggest that crack growth at high stress intensities is controlled by normal, bulk failure mechanisms such as void coalescence and the like. At intermediate stress-intensity levels the transport of hydrogen to some interaction site along the α-β boundary is the rate-controlling mechanism. The crack-growth behavior at low stress intensities suggests that the hydrogen interacts at this site to produce a strain-induced hydride which, in turn, induces crack growth by restricting plastic flow at the crack tip.  相似文献   

8.
It is well documented that the applied load for a given material/environment system has a significant effect on the stress corrosion cracking (SCC) behavior in terms of K ISCC values as well as on the K-da/dt relation. Traditionally, the role of crack-tip stress has not received proper attention but rather the crack-tip strain that is supposedly critical in cracking the passive oxide exposing the fresh metal surface at the crack tip to the environment. This article discusses a different point of view pertinent to crack-tip stress calculations and their role on SCC behavior. We have examined different continuum mechanics solutions with respect to the role of blunting on crack-tip stress. Both solutions where free traction boundary conditions are satisfied on a sharp and blunt crack are analyzed and discussed. It was shown that the stress component perpendicular to the crack plane at the crack tip for the plateau region remains essentially the same due to blunting even with the increase in applied load. Constant crack-tip stress would also result in rather constant crack-tip strain or creep rate, and as such, the crack growth rate remains the same or constant with respect to applied stress. Presented stress analysis is based on available solutions taken from the literature and assumes that a chemical potential at the crack tip is fixed.  相似文献   

9.
A series of high-temperature fatigue crack growth experiments was conducted on a continuous-fiberreinforced SM1240/TIMETAL-21S composite using three different temperatures, room temperature (24 °C), 500 °C, and 650 °C, and three loading frequencies, 10, 0.1, and 0.02 Hz. In all the tests, the cracking process concentrated along a single mode I crack for which the principal damage mechanism was crack bridging and fiber/matrix debonding. The matrix transgranular fracture mode was not significantly influenced by temperature or loading frequency. The fiber debonding length in the crack bridging region was estimated based on the knowledge of the fiber pullout lengths measured along the fracture surfaces of the test specimens. The average pullout length was correlated with both temperature and loading frequency. Furthermore, the increase in the temperature was found to lead to a decrease in the crack growth rate. The mechanism responsible for this behavior is discussed in relation to the interaction of a number of temperature-dependent factors acting along the bridged fiber/matrix debonded zone. These factors include the frictional stress, the radial stress, and the debonding length of the fiber/matrix interface. In addition, the crack growth speed was found to depend proportionally on the loading frequency. This relationship, particularly at low frequencies, is interpreted in terms of the development of a crack tip closure induced by the relaxation of the compressive residual stresses developed in the matrix phase in regions ahead of the crack tip during the time-dependent loading process.  相似文献   

10.
The microscopic fatigue damage characteristics and short fatigue crack growth of an unnotched SiC(SCS-6) fiber-reinforced Ti-15-3 alloy composite were investigated in tension-tension fatigue tests (R = 0.1) carried out at room temperature for applied maximum stress of 450, 670, and 880 MPa.In situ observation of the damage-evolution process was done using optical and scanning laser microscopies, which were attached in the fatigue machine. The first damage for the composite started from a cracking of the reaction layer followed by fiber fracture. The matrix cracking initiated near the broken fiber when the microhardness of the matrix just to the side of the fracture fiber reached ≈6 GPa, and the number of cycles for the initiation of this cracking decreased with the increase of applied stress. The slope of the relation of surface crack growth lengthvs number of cycles fell into two characteristic stages; in the first stage, the rate was lower than the second stage and accelerated. The surface crack growth rate,d(2c)/dN,vs surface crack length relation also fell into two stages (stages I and II). With the increase in surface crack length, the crack-growth rate,d(2c)/dN, decreased in stage I and increased in stage II. The transition from stage I to stage II occurred due to the fracture of fibers located around the first fractured fiber. It was concluded that the fatigue crack growth resistance of the composite in the short-crack region was controlled by the fiber fracture and matrix work hardening near the fractured fiber. When the fiber fracture occurred, the surface crack growth rate was accelerated and became faster than that of the monolithic matrix.  相似文献   

11.
The role of elastic shielding in reducing the local stress intensity factor (SIF) range during fatigue crack growth (FCG) has been investigated using several single-ply composites with significantly different interfacial characteristics. The specimen geometry necessitated the fatigue crack to initially grow through a monolithic matrix region before impinging on a set of longitudinally oriented fibers. This facilitated the assessment of the crack shielding phenomenon from two regions: the region where the crack interacted with the first fiber, and at high stress levels when nonbridging conditions prevailed in the fibrous region. The extent of shielding was nearly identical in the two measurements for a given composite system. However, the shielding contribution was found to depend on the interface bond strength; the interface with the highest bond strength provided the largest degree of crack retardation in both cases. A preliminary assessment of this dependency has been provided. The implications of using the correct shielding factor on both fiber strength and life prediction are also discussed. This article is based on a presentation made in the symposium “Fatigue and Creep of Composite Materials” presented at the TMS Fall Meeting in Indianapolis, Indiana, September 14–18, 1997, under the auspices of the TMS/ASM Composite Materials Committee.  相似文献   

12.
Sustained-load cracking (SLC) characteristics of Ti-6A1-4V are significantly influenced by 1) exposure temperature, 2) hydrogen content, and 3) basal plane crystallographic texture. The stress intensity applied to precracked specimens did not play a major role in affecting crack initiation or crack growth rate except that there would appear to be a required minimum level. Increasing hydrogen content raises the temperature at which SLC occurs and increases crack growth rate. A model for SLC has been proposed based on hydride precipitation at the crack tip and subsequent crack propagation by creep, cleavage, andJor interfacial separation at the hydrideJmatrix interface. Formerly with the Boeing Commercial Airplane Co., is presently an Engineering Consultant.  相似文献   

13.
14.
Based on the data of the literature for intercrystalline stress corrosion cracking (SCC) and hydrogen embrittlement of the High Strength AISI 4340 steel, determination of the so far unknown effects of tempering treatment around the low temper martensite embrittlement range (between 175 and 285°C) on the crack growth rates in 0.5 N NaCl solution. Effect of variation of stress intensity and applied potentials on crack growth rates. Effect of initial applied stress intensity and crack tip sharpness on crack growth characteristics. Discussion on crack growth rates for a better understanding of the SCC mechanism.  相似文献   

15.
A model to estimate the reduction of effective crack tip Mode III stress intensity factors by frictional and asperity interaction of an idealized fracture surface is described. An extension of the model is used to calculate the Mode I stress intensity factors due to the crack tip opening displacement induced by the mismatch of the fracture surface asperities. The results of calculations based on a “reasonable” fracture surface profile are used to analyze experimental studies designed to determine the relative significance of hydrogen embrittlement and crack tip dissolution in stress corrosion crack growth in Al alloys by comparison of Mode I and Mode III stress corrosion cracking (SCC) resistance. It is concluded that a pure Mode III stress state is not possible for cracks with microscopically rough surfaces and that the magnitude of the induced Mode I stress intensity factor is sufficient to cause stress corrosion crack growth.  相似文献   

16.
Fatigue and fracture mechanisms in Nb fiber-reinforced MoSi2 composites are elucidated in this article. The effects of fiber diameter on fracture and crack-tip shielding mechanisms are discussed after a review of micromechanical models which are applied to the prediction of residual stress levels, toughening, and microcracking phenomena. Toughening is shown to occur by a combination of crack bridging and crack-tip blunting under monotonic and cyclic loading. However, the observed failure mechanisms are different under monotonic and cyclic loading. Composites with smaller (250-μm) fiber diameters are shown to have better fatigue resistance and lower fracture toughness than composites with larger (750-μm) fiber diameters. The occurrence of slower fatigue crack growth rates in the composites reinforced with smaller diameter Nb fibers is rationalized by assessing the combined effects of fiber spacing and interfacial crack growth on the average crack growth rates within the composites.  相似文献   

17.
《Acta Metallurgica Materialia》1990,38(11):2327-2336
Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip Ks, with subcritical crack extension following the applied load change. Conditions for continued crack, growth crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in Ks compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material.  相似文献   

18.
A theoretical model for fatigue crack growth rate at low and near threshold stress intensity factor is developed. The crack tip is assumed to be a semicircular notch of radius ρ and incremental crack growth occurs along a distance 4ρ ahead of the crack tip. After analysis of the stress and strain distribution ahead of the crack tip, a relationship between the strain range and the stress intensity range is proposed. It is then assumed that Manson-Coffin cumulative rule can be applied to a region of length 4ρ from the crack tip, where strain reversal occurs. Finally, a theoretical equation giving the fatigue crack growth rate is obtained and applied to several materials (316L stainless steel, 300M alloy steel, 70-30 α brass, 2618A and 7025 aluminum alloys). It is found that the model can be used to correlate fatigue crack growth rates with the mechanical properties of the materials, and to determine the threshold stress intensity factor, once the crack tip radius α is obtained from the previous data.  相似文献   

19.
A titanium alloy (Ti-6A1-4V) reinforced with continuous SiC fibers (SCS-6) was thermally cycled between 200 ‡C and 700 ‡C in air and argon. The composite mechanical properties deteriorate with an increasing number of cycles in air because of matrix cracks emanating from the specimen surface. These cracks also give oxygen access to fibers, further resulting in fiber degradation. The following matrix cracking mechanisms are examined: (1) thermal fatigue by internal stresses resulting from the mismatch of thermal expansion between fibers and matrix, (2) matrix oxygen embrittlement, and (3) ratcheting from oxide accumulating within cracks. Matrix stresses are determined using an analytical model, considering stress relaxation by matrix creep and the temperature dependence of materials properties. Matrix fatigue from these cycli-cally varying stresses (mechanism (1)) cannot solely account for the observed crack depth; oxygen embrittlement of the crack tip (mechanism (2)) is concluded to be another necessary damage mechanism. Furthermore, an approximate solution for the stress intensity resulting from crack wedging by oxide formation (mechanism (3)) is given, which may be an operating mech-anism as well for long cracks. S.H. THOMIN, formerly Graduate Student, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA  相似文献   

20.
This research reports an investigation into the influence of mechanically induced martensitic transformation on the rate of fatigue crack growth in 304-type austenitic stainless steels. Two steels of different composition, 304L and 304LN, were used to test the influence of composition; two test temperatures, 298 and 77 K, were used to study the influence of test temperature; and various load ratios were used to determine the influence of the mean stress. It was found thadecreasing the mechanical stability of the austenite by changing composition or lowering temperature reduces the fatigue crack growth rate and increases the threshold stress intensity for crack growth. However, this beneficial effect diminishes as the load ratio increases, even though increasing the load ratio increases the extent of the martensite transformation. Several mechanisms that may influence this behavior are discussed, including the perturbation of the crack tip stress field, crack deflection, work hardening, and the relative brittleness of the transformed material. The perturbation of the stress field seems to be the most important; by modifying previous models, we develop a quantitative analysis of the crack growth rate that provides a reasonable fit to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号