首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对风电大规模并网所引起的系统频率不稳定,以及系统惯量降低导致调频能力下降的问题,在风储联合参与系统一次调频运行模式下,考虑储能荷电状态约束,提出了风储联合协同调频控制策略。建立含风储系统模型,提出了风储联合协同一次调频控制策略,并对风速区间进行了划分,在不同风速区间采取风机变速或变桨协调调频控制策略,以提高风电自身调频的利用程度。最后,在MATLAB/Simulink平台搭建了含风储联合系统的电网频率特性仿真模型,结果表明,所提策略能够有效改善电力系统综合频率特性,对风储联合实际工程的调频问题提供了理论依据。  相似文献   

2.
风能接入电网后会对系统频率产生负面影响,制定合理的风储联合调频策略可以减小风机并网引起的频率波动.为了准确分析风储联合调频策略的经济性,首先结合电网、风机与储能系统特性,考虑电网与风机的惯性后对风储联合系统进行建模,模拟了风储联合调频时的频率响应过程.然后确定调频功率、风功率及系统频率的关系,结合调频效果确定调频系数,并改进了备用容量的配置策略与调频功率的分配策略.最后以调频成本最小为目标建立了优化模型,使用粒子群优化算法对储能系统的最优配置进行求解.算例结果表明,采用的风储联合调频策略及储能系统优化配置可以有效降低调频成本,提高风储联合系统的经济性.  相似文献   

3.
大规模风电场中各区域风速的不一致性,使得传统风机参与电网调频研究时的风速统一化处理并不符合现实需求,也使得电网负荷频率控制更趋复杂。研究了风电机组的调频能力与风速的关系,并分析了不同风速下,风机通过虚拟惯量控制参与电网调频的特性;针对不同风速的风电机组参与电网调频能力的不一致性,分析了利用储能辅助风电机组,以获得更优调频效果的可行性;考虑到储能电池充放电深度与循环使用寿命之间的关系,以频率偏差最小和储能出力最小为目标进行风储联合辅助调频方法的设计,一方面保证良好的调频效果,另一方面最小化储能的充放电深度以提高其循环使用寿命。仿真分析验证了所提方法的可行性与有效性。  相似文献   

4.
在风电场中配置储能系统构成风储联合系统可有效提高对电网主动支撑能力,在满足电网一次调频需求的同时还可以提高风电利用率,增加风电场的经济效益。以双馈风机(double fed induction generator,DFIG)与超级电容储能为例,基于不同风速下DFIG参与调频能力,提出了一种风储联合系统参与电网一次调频的控制策略。考虑风速、频差变化率和频率偏差3个因素设计多变量模糊逻辑控制器,实现风储功率的合理调配,根据储能系统的荷电状态(state of charge,SOC)动态设置DFIG调频备用容量,提升不同风况下风储联合系统的一次调频能力。最后,在MATLAB/Simulink仿真平台对所提策略有效性进行验证,结果表明,所提策略在提升风储联合系统一次调频能力的同时,实现了风储调频功率的合理分配,减少了弃风及风机出力振荡风险,改善了系统的频率稳定性。  相似文献   

5.
电池储能可快速吞吐功率,被视为优质调频资源,但过度充放电会导致其调频能力不足。文中提出一种改善的储能系统参与一次调频效果的控制策略。首先,将储能调频死区设置在机组死区范围内,并结合电网频率特性分析储能调频死区变化对频率的影响。在此基础上,基于权重因子和荷电状态(SOC)恢复提出储能参与的一次调频策略:在频率波动超过储能调频死区时,为避免电池过度充放电提出储能调频系数计算方法,同时引入控制虚拟惯性和虚拟下垂出力比重随频率变化而调节的权重因子,进而设计了调频控制方法;在频率不超过储能调频死区时,兼顾储能恢复需求和电网承受能力,提出储能SOC恢复方法。仿真结果表明:所提策略能有效改善电网频率波动和储能SOC。  相似文献   

6.
针对未来电网一次调频资源不足的问题,提出一种基于充放电裕度的电动汽车集群虚拟储能参与电网一次调频的自适应控制策略。首先,分析电动汽车的调控运行范围。其次,研究电动汽车集群参与电网一次调频方法。考虑电动汽车充放电时间和电池荷电状态(SOC)裕度,设计电动汽车充放电裕度指标。接着,提出基于充放电裕度的自适应一次调频控制策略,优化电动汽车参与一次调频的下垂功率,从而兼顾电网一次调频和电动汽车充放电需求。然后,通过定时更新方式评估电动汽车集群虚拟储能的一次调频能力,并提出一次调频效果评价指标。最后通过区域电网仿真案例分析,验证了所提策略在减少系统频率偏差和优化电动汽车一次调频出力的有效性。  相似文献   

7.
风机通过电力电子设备连接至电网,当转子动能与系统频率解耦,无法为电网频率变化提供惯性支撑,随着系统中风电比例的增加,系统频率稳定受到严峻挑战。文中提出一种变系数综合惯性控制方法,风机能够根据频率的扰动灵活调节输出功率;在此基础上,提出结合桨距角备用控制协同调频方法,通过对风速的分段处理,使风电机组参与电网调频具有针对性;为进一步优化风电机组调频性能,风电并网系统增加了储能装置,通过对风储系统惯性进行详细分析,提出了一种风储系统联合调频控制策略,采用模糊控制策略对中高风速区间风储出力分配制定相应的规则,实时调节储能出力系数。最后对风储调频策略进行仿真验证,结果表明,所提方法能有效改善风电机组调频效果,保证高比例风电并网的频率稳定。  相似文献   

8.
大规模新能源并网造成电网频率波动增大,使得火电机组调频任务繁重、动作频繁,加剧了机组老化,飞轮储能辅助火电机组调频能提升机组的调频性能。论述了飞轮储能辅助机组一次调频原理,分析了飞轮储能的出力特性,结合世界最大容量飞轮储能,提出了飞轮储能满功率辅助机组一次调频的控制策略,并应用于我国第一套飞轮储能辅助火电机组一次调频的调试中,验证了控制策略有效性。现场测试结果表明,飞轮储能辅助火电机组一次调频性能良好,采取所提一次调频策略后该机组一次调频动作合格率提升21.26%,一次调频积分电量贡献指数提升3.45倍。飞轮储能辅助火电机组一次调频模式对解决此类问题具有一定指导意义。  相似文献   

9.
电力储能是维持新能源高渗透形势下电网频率稳定的有效手段,分散布置、统一调度是其参与系统二次调频的主要控制模式。针对现有控制策略分配二次调频需求合理性不足的问题,该文提出面向二次调频需求的PXP储能集群分布式均衡控制策略,其中PXP储能表示一类将电能(power)转化为其他形式能(X)再转回电能(power)的储能形式。该策略通过构建考虑储能实时容量的调频耗量函数,利用分布式算法,以调频耗量最小化为目标,实现对系统调频需求的最优分配。仿真结果表明,该策略能够打破功率型和能量型储能的界限,实现集群容量的均衡控制。同时,分布式算法使控制策略的运算速度显著提升,满足储能即插即用的要求。综上所述,该文所述策略通过对PXP储能集群在二次调频中的高效利用,提高了电网频率的稳定性。  相似文献   

10.
随着“双碳”目标的提出,新能源装机总量不断提高,对电网频率安全提出了更大的挑战。飞轮储能凭借其响应速度快、充放电次数多等优点,在联合火电机组参与调频、提升电网频率安全方面受到广泛关注。为更加充分利用飞轮储能辅助电网调频的快速性优势,设计了一种基于自适应协同下垂的飞轮储能联合火电机组一次调频控制策略,实现了火-储联合系统的功率协同自适应调整。仿真验证表明,所提出的控制策略可以有效改善火-储联合系统的调频性能,相比传统下垂控制,系统最大动态频差和稳态频差分别减少了29.00%和25.50%,缓解了火电机组调频压力,有利于火电机组安全稳定运行。  相似文献   

11.
提出了一种火电-储能一体化系统的构造方法,并设计了协同调频控制策略以改善火电机组一次调频性能。在严重有功扰动场景下,利用储能装置的快速响应能力提升了火电机组的一次调频响应速率,改善系统频率跌落深度。在负荷日常波动场景下,利用储能装置响应一次调频指令的高频分量,抑制了火电机组一次调频功能的频繁动作。此外,提出了储能能量恢复控制策略,采用火电充裕的能量恢复储能荷电状态,避免储能的过度充放。算例分析表明,所提方法可有效提升火电机组的一次调频性能,并能够有效维持运行过程中储能的荷电状态。  相似文献   

12.
随着常规火电机组和储能系统联合参与调频在电力系统中取得规模化应用,储能系统和火电机组联合调频控制策略成为二次调频的关键问题。基于两阶段储能荷电状态(state of charge, SOC)实时预测方法,对调频系统完成跟踪自动发电控制(automatic generation control, AGC)指令后的荷电状态进行主动预测;参考预测所得SOC数据和AGC指令,得到兼顾系统调频能力及储能SOC状态的联合前馈控制指令,确定火电机组和储能系统不同状态下的出力目标,实现储能和火电机组对AGC指令跟踪的互补协调运行。同时,在储能系统内部引入基于荷电状态的储能单体均衡策略,优化储能系统SOC一致性,提升储能系统整体动作深度。在MATLAB/Simulink中构建联合调频典型场景,对所提控制策略进行仿真验证。结果表明,所提控制策略在优化AGC指令跟踪效果、提升系统综合调频指标及改善储能单体SOC状态等方面具有显著优势。  相似文献   

13.
风电与储能联合投标可有效应对风电的随机性,提高风电与储能的综合效益.文章针对电力市场环境下风储联合投标的模型与算法问题开展研究.首先,详细考虑储能电池循环寿命、风储联合调频性能、风储联合运行条件及电力市场方面的约束,建立风储联合参与电能量市场和调频市场的投标模型.然后,将所提模型转化为马尔科夫决策过程,并提出一种改进动...  相似文献   

14.
为了充分发掘风电机组调频能力,考虑传统储能系统直接补偿风电场二次频率跌落调频控制策略存在储能系统容量需求高、经济性差的缺点,该文提出一种基于虚拟同步机(VSG)技术的风储系统协调调频控制策略。首先,在风储VSG系统结构基础上建立风储VSG数学模型,并分析风储VSG调频特性;其次,依据储能系统数学模型研究储能系统VSG调频控制方法;然后,综合考虑风电场与储能系统出力特点,提出基于风电惯量释放和储能稳态支撑的风储协调控制策略,通过风电场与储能系统并行出力的方式,在降低储能系统容量需求的同时充分发挥风电机组短时功率支撑的作用;最后,通过仿真分析可知,采用该文控制策略可在稳定系统频率的基础上大幅降低储能系统容量配置,提高风电场调频经济性。  相似文献   

15.
王楠  李振  周喜超  刘超  安坤  丛琳 《热力发电》2021,50(8):148-156
随着新能源在能源系统中占比的逐步提高,储能系统联合火电机组自动发电控制(AGC)调频技术在我国电力行业发展迅猛。本文结合南方市场调频辅助服务补偿规则,研究了机组AGC与储能系统联合调频的特性;从提升机组AGC调频性能的角度,制定了储能充放电控制策略,并通过与机组原AGC联合调频仿真研究了储能功率和储能容量对AGC综合调频性能指标的影响;建立了AGC调频收益评价模型,在此基础上给出了储能容量配置的建议。仿真结果表明,合理配置储能系统可以显著提升常规机组的调频性能,并带来明显的调频收益。  相似文献   

16.
为提升风-储联合运行系统的动态频率稳定性能,针对目前调频控制策略未充分发挥风电机组频率调节能力、无法适应负荷扰动过大情况以及转子转速恢复阶段存在频率二次跌落的问题,提出一种考虑系统频率安全稳定约束的风储联合频率响应控制策略。在惯量响应阶段结合转速约束和频率指标自适应调整虚拟惯量和下垂控制系数,在转子转速恢复阶段利用负指数函数动态调整转速恢复过程中功率参考值,避免频率的二次跌落。将风电机组与储能电池结合,引入频率稳定域概念,利用储能电池扩展频率稳定域边界,进一步提升风储联合系统的抗负荷扰动能力和频率稳定性。最后对风储联合调频策略进行仿真,结果表明在不同风速和不同负荷扰动下,所提控制策略能充分发挥风电机组频率响应控制能力的同时,避免了频率二次跌落,提升了电网频率安全稳定性。  相似文献   

17.
为确保电网频率安全稳定,混合储能联合光伏主动参与电力系统一次调频已成趋势,为此提出了一种混合储能联合光伏发电的一次调频控制策略。针对储能传统定系数下垂控制存在的储能易发生过充过放的问题,提出了储能自适应变系数下垂控制;为了充分利用2种储能的不同特性,提出了频率偏差自适应分配方法;同时设计了光储耦合控制模块,以弥补光伏功率备用容量和锂电池储能调频功率有限的不足。在Matlab/Simulink仿真平台进行不同负荷扰动场景下的仿真实验。仿真结果表明:所提控制策略可以显著提升光伏系统主动一次调频性能及其适应性。  相似文献   

18.
考虑电力系统调频效果和储能容量,提出一种储能参与电网一次调频的出力策略。通过超短期负荷预测曲线得到调频需求,提出了基于双层模糊控制的动态荷电状态(SOC)基准储能容量恢复策略,并给出了储能电池参与一次调频的效果评价指标与储能SOC健康度评价指标。最后,以典型区域电网为例,对所提策略在2种典型工况下进行仿真分析并与常规控制策略比较。结果表明,所提策略能够有效改善调频效果和储能SOC健康状态。  相似文献   

19.
针对风电集群联合共享储能系统的协调控制和收益分配问题,提出基于预测误差分配原则的运行控制策略。首先,设计共享储能商业运行模式,建立储能变寿命与充放电模型。考虑政策补贴和季节性温度对储能定价和容量配置影响,建立多风场时空相关特性的风群联合大容量共享储能参与能量/调频市场的容量规划模型。通过所提策略计算风储联合系统的最优储能容量配置,分析季节性风况对储能配置的差异性。结果表明,在无储能购电补贴时,所提商业模式也能获得稳定盈利,并同时满足风电集群并网要求,控制弃风率在5%以内。基于误差分配的方法能够平衡各风电场收益,考虑季节性温度使储能实际收益提升约3.6%。同时夏冬季储能配置呈现双反比现象,所提方法为发电侧共享储能规模化应用提供了参考。  相似文献   

20.
针对核电机组参与电网一次调频存在限制问题,提出一种用飞轮加锂电池混合储能来辅助核电机组一次调频的控制策略。介绍和阐述飞轮储能、锂电池储能调频特点及混合应用调频优势,对控制策略涉及的基本控制方案、控制系统结构、调频参数设置定义、调频分级承载和构建实施要点方面进行说明。结合330 MW核电机组实施例,对控制系统要点实施和一次调频动作进行重点分析,给出该控制策略针对性解决核电机组一次调频受限问题的有益效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号