共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
协调机器学习的稳定性研究 总被引:5,自引:0,他引:5
李凡长 《小型微型计算机系统》2002,23(3):314-317
传统的机器学习方法 ,学习过程不影响被学习系统 ,并且被学习系统通常不是可变的 ,本文提出的协调机器学习系统 ,把学习与被学习作为一个整体来研究 ,进一步丰富和发展了机器学习的基本内容 相似文献
3.
针对火电环保领域海量的环保数据无法高度利用问题,本文采用大数据、人工智能和机器学习等信息技术,构建国家能源集团的基于大数据的火电厂智慧环保平台,结合龙源环保公司脱硫、脱硝系统方面的专业技术和优化运行模型,将海量的脱硫脱硝等环保数据全部纳入管理,对电厂开展了深层挖掘数据使用价值的研究。建设覆盖公司全管理领域和业务领域的智慧环保大数据平台,打造集数据采集、数据处理、监测管理、预测预警、优化运行、深度分析于一体的大数据中心。实现火电厂环保岛系统的智能控制和智慧管控,提升公司脱硫脱硝系统专业化服务能力和智慧化服务水平。本文以北京国电龙源环保工程有限公司为例,进行了环保数据平台建设,实现设备的全生命周期管理,帮助运维负责人员实现对企业环保资产的有效管理。 相似文献
4.
甄盼好 《网络安全技术与应用》2014,(1):176-177
本文以什么是机器学习、机器学习的发展历史和机器学习的主要策略这一线索,对机器学习进行系统性的描述。接着,着重介绍了流形学习、李群机器学习和核机器学习三种新型的机器学习方法,为更好的研究机器学习提供了新的思路。 相似文献
5.
开源数据库-重症特别护理信息集MIMIC数据库包含了大量的医学数据,自它发布之日起,便得到了众多研究人员的青睐。但低效的挖掘方法很难发现内部的隐含信息,这使得MIMIC数据库得不到很好的利用,造成了资源的浪费。探索新兴的挖掘方法进行知识发现便显得异常重要。文中对围绕MIMIC数据库的各种挖掘方法进行综述,重点阐述了新出现的机器学习和深度学习方法。同时将传统统计学模型与新出现的人工智能技术包括机器学习和深度学习技术进行比较分析。结果发现相比传统的统计学模型,机器学习和深度学习技术在预测病人的早期死亡率、发现疾病影响因素等方面普遍效果更好,这有助于改善医疗质量、帮助医生进行辅助诊断,在一定程度上也减少了病人的医疗费用。 相似文献
6.
This editorial summarizes and analyzes 17 articles selected for a special issue on machine learning advances for Industry 4.0 applications. The diverse articles cover fault detection, deep learning optimisation, IoT networking, vehicle control, recommendation systems and domain knowledge integration. Key methods represented include neural networks, deep learning, reinforcement learning and explainable AI. Real-world industrial case studies showcase machine learning's versatility in enabling intelligent automation, control, and decision-making across manufacturing, healthcare, transportation and other sectors. While highlighting theoretical innovations, the contributions also demonstrate machine learning's transformative potential for intelligent, connected, self-optimising next generation production systems. This editorial concisely overviews the latest trends represented in this special issue. 相似文献
7.
M. Alexander Nugent 《International Journal of Parallel, Emergent and Distributed Systems》2018,33(4):430-444
AbstractWe introduce a technology stack or specification describing the multiple levels of abstraction and specialisation needed to implement a neuromorphic processor (NPU) based on the previously-described concept of AHaH Computing and integrate it into today’s digital computing systems. The general purpose NPU implementation described here is called Thermodynamic-RAM (kT-RAM) and is just one of many possible architectures, each with varying advantages and trade offs. Bringing us closer to brain-like neural computation, kT-RAM will provide a general-purpose adaptive hardware resource to existing computing platforms enabling fast and low-power machine learning capabilities that are currently hampered by the separation of memory and processing, a.k.a the von Neumann bottleneck. Because understanding such a processor based on non-traditional principles can be difficult, by presenting the various levels of the stack from the bottom up, layer by layer, explaining kT-RAM becomes a much easier task. The levels of the Thermodynamic-RAM technology stack include the memristor, synapse, AHaH node, kT-RAM, instruction set, sparse spike encoding, kT-RAM emulator, and SENSE server. 相似文献
8.
大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分区、索引维护、查询优化、查询调度等,以不断提高数据库针对特定硬件、数据和负载的性能.同时,一些机器学习模型可以替代数据库系统中的部分组件,有效减少开销,如学习型索引结构等.分析了人工智能赋能的数据管理新技术的研究进展,总结了现有方法的问题和解决思路,并对未来研究方向进行了展望. 相似文献
9.
海洋中尺度涡是一种重要的海洋中尺度现象,在海洋环流、物质能量传输中发挥重要作用,对舰船航行安全、水声通信等也具有重要的影响。高效准确地检测识别出海洋中尺度涡无论对于物理海洋认知还是海洋开发利用都有着重要的研究价值。传统涡旋检测识别方法依赖专家经验设计的单一阈值,具有显著的主观性。随着深度学习的兴起,机器学习方法在涡旋检测识别的准确性和自动化程度上表现出一定的优势。通过总结与对比分析现有基于机器学习的检测识别方法,为发展海洋中尺度涡检测识别的研究提供系统认知和参考依据。 相似文献
10.
11.
12.
13.
Artificial Intelligence is at the heart of modern society with computers now capable of making process decisions in many spheres of human activity. In education, there has been intensive growth in systems that make formal and informal learning an anytime, anywhere activity for billions of people through online open educational resources and massive online open courses. Moreover, new developments in Artificial Intelligence-related educational assessment are attracting increasing interest as means of improving assessment efficacy and validity, with much attention focusing on the analysis of the large volumes of process data being captured from digital assessment contexts. In evaluating the state of play of Artificial Intelligence in formative and summative educational assessment, this paper offers a critical perspective on the two core applications: automated essay scoring systems and computerized adaptive tests, along with the Big Data analysis approaches to machine learning that underpin them. 相似文献
14.
The paradox of fuzzy modeling is recognized due to the co-existence of its effectiveness of solving uncertain problems in the real world and the skepticism of its reasonability in membership function. In this paper, a revised membership function by means of supervised machine learning is introduced, in which the membership function curve is revised from the learning data of existing samples. It points that the information from supervised machine learning by samples is in the same argument to the statistic data from observation in the probability model. The formulations of supervised fuzzy machine learning by samples for revising the membership function are presented, and satisfactory results by the revised membership function compared with the experimental data are shown. It steps forward in promoting the pragmatic application of fuzzy methods in real world problems. 相似文献
15.
Yandong Xu;Shah Nazir; 《Journal of Software: Evolution and Process》2024,36(2):e2486
Art design is a method of conveying human feelings and emotions, particularly via the use of visual structures such as paintings or sketches. Every element of our life, including arts and crafts, has been positively affected by the introduction of novel technologies such as artificial intelligence (AI) and machine learning (ML). In today's modern environment, these technologies have altered the techniques of art creation, consumption, and distribution. In today's environment, ML and human emotions are the two most important aspects for interactive and high-quality art design. Whereas traditional learning systems can be extremely effective in the teaching and learning process of art-related subjects, AI and ML can be very effective in the teaching and learning process of art-related subjects for the advancement of learners' artistic skills. The productive and active role of AI and ML in the developments and advancements of art design has been given a very comprehensive and detailed overview in this study. Following a detailed examination of the existing techniques, distinct characteristics have been identified. Six of the most widely utilized features were chosen from the literature to execute the analytical hierarchy process (AHP). For ranking the options based on the weights derived by AHP, the TOPSIS algorithm is used. The option with the best performance came in first, whereas the one with the worst performance came in last. 相似文献
16.
基于人工智能方法的复杂过程故障诊断技术 总被引:9,自引:3,他引:9
由于复杂过程因素多,波动大,反应机理复杂,无法建立精确的数学模型,传统的故障诊断方法很难取得令人满意的结果。针对复杂过程的特点,利用智能技术无需建立对象精确模型的优势,研究适合复杂过程实现的基于人工智能方法的故障诊断技术。并对构造智能诊断系统所需要解决的机器学习技术从知识获取、深浅知识表示方法和规则更新方面进行了分析。最后对基于人工智能方法的复杂过程故障诊断技术研究的发展趋势和有待解决的问题进行了分析与探讨。 相似文献
17.
18.
强化学习是一种从试错过程中发现最优行为策略的技术,已经成为解决环境交互问题的通用方法.然而,作为一类机器学习算法,强化学习也面临着机器学习领域的公共难题,即难以被人理解.缺乏可解释性限制了强化学习在安全敏感领域中的应用,如医疗、驾驶等,并导致强化学习在环境仿真、任务泛化等问题中缺乏普遍适用的解决方案.为了克服强化学习的这一弱点,涌现了大量强化学习可解释性(explainable reinforcement learning,XRL)的研究.然而,学术界对XRL尚缺乏一致认识.因此,探索XRL的基础性问题,并对现有工作进行综述.具体而言,首先探讨父问题——人工智能可解释性,对人工智能可解释性的已有定义进行了汇总;其次,构建一套可解释性领域的理论体系,从而描述XRL与人工智能可解释性的共同问题,包括界定智能算法和机械算法、定义解释的含义、讨论影响可解释性的因素、划分解释的直观性;然后,根据强化学习本身的特征,定义XRL的3个独有问题,即环境解释、任务解释、策略解释;之后,对现有方法进行系统地归类,并对XRL的最新进展进行综述;最后,展望XRL领域的潜在研究方向. 相似文献
19.
利用人工智能技术和深度学习算法,设计开发了基于AI+IOT的智慧家居系统。基于百度提供的免费的语音识别云平台,该系统使用ZigBee网络,对家居环境数据进行采集、分析,并通过物联网技术和人工智能技术实现远程语音控制各种家电的功能。基于深度学习,系统通过百度语音识别技术对自然语言进行语音识别,通过搭建系统编译环境成功融合了AI技术和IOT技术实现了具有语音控制功能的智能家居系统,致力于为人们提供更加便捷智能的生活。 相似文献
20.
近年来,恶意软件给信息技术的发展带来了很多负面的影响.为了解决这一问题,如何有效检测恶意软件则一直备受关注.随着人工智能的迅速发展,机器学习与深度学习技术逐渐被引入到恶意软件的检测中,这类技术称之为恶意软件智能检测技术.相比于传统的检测方法,由于人工智能技术的应用,智能检测技术不需要人工制定检测规则.此外,具有更强的泛化能力,能够更好地检测先前未见过的恶意软件.恶意软件智能检测已经成为当前检测领域的研究热点.主要介绍了当前的恶意软件智能检测相关工作,包含了智能检测所需的主要环节.从智能检测中常用的特征、如何进行特征处理、智能检测中常用的分类器、当前恶意软件智能检测所面临的主要问题4个方面对智能检测相关工作进行了系统地阐述与分类.最后,总结了先前智能检测相关工作,阐明了未来潜在的研究方向,旨在能够助力恶意软件智能检测的发展. 相似文献