共查询到15条相似文献,搜索用时 78 毫秒
1.
本文结合笔者所设计的超声波测距仪,介绍了用神经网络校正超声波传感器的非线性误差的原理与方法,并提出了基于BP神经网络的超声波测距非线性误差校正的模型、算法及其硬件实现。通过理论分析和硬件实验,显示出BP神经网络对超声波传感器的温度补偿和非线性校正的效果良好,充分表明了应用神经网络在提高超声波测距精度方面是一种行之有效的方法。 相似文献
2.
3.
车型识别在高速公路收费、停车收费、城市道路监控等诸多领域有着广泛的应用。针对传统车型识别系统存在的识别效率低、结构复杂、安装难度大等问题,提出并实现了一种基于超声波测距及BP神经网络的车型识别系统。该系统以嵌入式微处理器、485总线为核心,运用超声波测臣实现对车辆外形尺寸的检测,并从中提取表征车型的四个参数,通过BP神经网络对所获取的参数进行自动分类识别。实验结果表明,该方法车型识别的正确率在95%以上。 相似文献
4.
5.
基于BP神经网络的超声测距误差补偿 总被引:1,自引:0,他引:1
指出了超声波在测距应用中的局限性,并给出解决方案。着重从新的角度补偿超声传感器的误差,提出了用BP前馈神经网络补偿超声波声速受温度、湿度变化而引起的误差。在室外工作的测距仪上,应用该补偿方法后超声测距的精度提高了2个数量级。本方案适用于高精度要求或复杂环境下超声测距。 相似文献
6.
7.
分析了超声测距原理及其存在误差的原因,提出了一种采用BP神经网络的超声测距误差补偿算法。该算法可对给定的输入向量和目标向量进行样本训练,在训练过程中不断调整权值、阈值,最终达到一定的映射关系以修正误差。仿真结果验证了该算法的有效性。 相似文献
8.
9.
10.
11.
12.
13.
14.
在时间序列分类等数据挖掘工作中,不同数据集基于类别的相似性表现有明显不同,因此一个合理有效的相似性度量对数据挖掘非常关键。传统的欧氏距离、余弦距离和动态时间弯曲等方法仅针对数据自身进行相似度公式计算,忽略了不同数据集所包含的知识标注对于相似性度量的影响。为了解决这一问题,提出基于孪生神经网络(SNN)的时间序列相似性度量学习方法。该方法从样例标签的监督信息中学习数据之间的邻域关系,建立时间序列之间的高效距离度量。在UCR提供的时间序列数据集上进行的相似性度量和验证性分类实验的结果表明,与ED/DTW-1NN相比SNN在分类质量总体上有明显的提升。虽然基于动态时间弯曲(DTW)的1近邻(1NN)分类方法在部分数据上表现优于基于SNN的1NN分类方法,但在分类过程的相似度计算复杂度和速度上SNN优于DTW。可见所提方法能明显提高分类数据集相似性的度量效率,在高维、复杂的时间序列的数据分类上有不错的表现。 相似文献
15.
基于神经网络理论的现场总线系统安全性评价的研究 总被引:1,自引:0,他引:1
余勇 《自动化与仪器仪表》2004,4(5):8-10
本文在介绍神经网络基本原理的基础上,提出了BP神经网络的优化算法:BP-1算法。进而分析了神经网络应用于现场总线系统安全性评价的优点,提出了基于神经网络理论的现场总线系统安全性评价模型和实现方法。最后,以一个原型系统证明了该方法的有效性。 相似文献