首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
本文结合笔者所设计的超声波测距仪,介绍了用神经网络校正超声波传感器的非线性误差的原理与方法,并提出了基于BP神经网络的超声波测距非线性误差校正的模型、算法及其硬件实现。通过理论分析和硬件实验,显示出BP神经网络对超声波传感器的温度补偿和非线性校正的效果良好,充分表明了应用神经网络在提高超声波测距精度方面是一种行之有效的方法。  相似文献   

2.
基于神经网络的传感器非线性误差校正   总被引:10,自引:3,他引:10  
介绍了用神经网络校正传感器系统非线性误差的原理和方法 ,提出了基于BP神经网络传感器非线性误差校正及其模型、算法与实现技术。通过计算机仿真与应用 ,显示出这种逆模型不但可实现温度补偿和非线性校正 ,而且网络结构简单 ,准确度高  相似文献   

3.
车型识别在高速公路收费、停车收费、城市道路监控等诸多领域有着广泛的应用。针对传统车型识别系统存在的识别效率低、结构复杂、安装难度大等问题,提出并实现了一种基于超声波测距及BP神经网络的车型识别系统。该系统以嵌入式微处理器、485总线为核心,运用超声波测臣实现对车辆外形尺寸的检测,并从中提取表征车型的四个参数,通过BP神经网络对所获取的参数进行自动分类识别。实验结果表明,该方法车型识别的正确率在95%以上。  相似文献   

4.
BP神经网络在测距误差补偿中的应用   总被引:1,自引:0,他引:1  
文章提出了一种采用BP前馈神经网络补偿超声波测距受温度、湿度变化而引起的误差的方法,详细介绍了如何利用BP神经网络数据融合方法补偿超声测距传感器误差的实现方法,给出了该方法在室外测距仪中的应用实例。实际应用表明,该补偿方法明显提高了超声测距的精度,适用于高精度要求或复杂环境下的超声测距。  相似文献   

5.
基于BP神经网络的超声测距误差补偿   总被引:1,自引:0,他引:1  
指出了超声波在测距应用中的局限性,并给出解决方案。着重从新的角度补偿超声传感器的误差,提出了用BP前馈神经网络补偿超声波声速受温度、湿度变化而引起的误差。在室外工作的测距仪上,应用该补偿方法后超声测距的精度提高了2个数量级。本方案适用于高精度要求或复杂环境下超声测距。  相似文献   

6.
传感器非线性误差校正的BP神经网络方法研究   总被引:3,自引:0,他引:3  
研究了采用BP神经网络实现传感器逆向建摸,用三种神经网络方法(LM算法)计算比较了使用两种不同初始化规则和不同网络结构时对网络性能和计算精度的影响。计算机仿真实验表明:使用NW初始化规则并改进网络结构后,网络的收敛速度更快,精度更高。  相似文献   

7.
分析了超声测距原理及其存在误差的原因,提出了一种采用BP神经网络的超声测距误差补偿算法。该算法可对给定的输入向量和目标向量进行样本训练,在训练过程中不断调整权值、阈值,最终达到一定的映射关系以修正误差。仿真结果验证了该算法的有效性。  相似文献   

8.
传统RSSI测距模型在移动机器人对使用者进行定位时存在依赖环境参数和不能辨别目标方位等问题,因此提出一种基于BP神经网络的测距定位方法.该方法采用了RSSI测距模型和超声波测距模型,利用测距定位模块收集到的RSSI值与超声波数据作为输入对BP神经网络进行训练.实验结果表明,该方法有效地解决了传统RSSI测距模型的问题,对目标距离估计准确率达89.98%、对目标方位估计准确率达88.18%,在移动机器人对使用者进行定位时取得良好效果.  相似文献   

9.
提出了一种基于改进型BP神经网络的瓦斯传感器的非线性校正方法,利用神经网络良好的非线性映射能力,逼近反非线性函数完成非线行校正。仿真实验结果表明:与传统的分段线性与BP算法相比,改进型的BP神经网络收敛速度快、逼近精度高,准确度由原来分段线性校正的±5.020%提高到现在的±0.130%,且易于动态调校。  相似文献   

10.
超声波测距误差分析   总被引:18,自引:3,他引:18  
介绍了超声波测距的原理以及环境对测量准确度的影响,分析了测量误差产生的原因。阐述了仪器设计时超声波传感器的选择、计数频率的确定及盲区对测量的影响,指出了提高测量准确度的途径,重点阐述了利用软件修正误差的方法,使仪器达到了设计指标,满足了工业测量的实际需要。  相似文献   

11.
基于RBF神经网络的传感器非线性误差校正方法   总被引:4,自引:2,他引:4  
介绍了利用人工神经网络进行传感器非线性误差校正的原理。提出了传感器非线性误差校正的径向基函数(RBF)神经网络方法,并与采用BP神经网络校正非线性误差进行了比较。最后给出了一个仿真实验,实验结果表明:采用RBF神经网络可以明显提高网络收敛速度,大大减小传感器非线性误差,校正效果优于BP神经网络。  相似文献   

12.
介绍了光电位置敏感探测器(PSD)的组成结构和工作原理,分析了传感器产生非线性的原因。对实际一维PSD进行了实验标定,建立了一般BP神经网络非线性校正模型,为了提高网络校正结果精度,提出融合误差曲线分段处理和BP神经网络的高精度校正方法,实例运用结果证明了该方法的可行性和优越性,大大提高了非线性区域的测量准确度和数据的置信度。对于传感器测量范围的扩大和整个测试系统精度的提高都具有较大的应用价值。  相似文献   

13.
基于广义回归神经网络的传感器非线性误差校正   总被引:2,自引:1,他引:2  
介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。通过Matlab的Network Toolbox(神经网络工具箱),GRNN训练程序实现了输出特性曲线逼近。仿真分析表明:GRNN能够很好地满足传感器非线性拟合的要求,网络结构简单,收敛速度快。  相似文献   

14.
姜逸凡  叶青 《计算机应用》2019,39(4):1041-1045
在时间序列分类等数据挖掘工作中,不同数据集基于类别的相似性表现有明显不同,因此一个合理有效的相似性度量对数据挖掘非常关键。传统的欧氏距离、余弦距离和动态时间弯曲等方法仅针对数据自身进行相似度公式计算,忽略了不同数据集所包含的知识标注对于相似性度量的影响。为了解决这一问题,提出基于孪生神经网络(SNN)的时间序列相似性度量学习方法。该方法从样例标签的监督信息中学习数据之间的邻域关系,建立时间序列之间的高效距离度量。在UCR提供的时间序列数据集上进行的相似性度量和验证性分类实验的结果表明,与ED/DTW-1NN相比SNN在分类质量总体上有明显的提升。虽然基于动态时间弯曲(DTW)的1近邻(1NN)分类方法在部分数据上表现优于基于SNN的1NN分类方法,但在分类过程的相似度计算复杂度和速度上SNN优于DTW。可见所提方法能明显提高分类数据集相似性的度量效率,在高维、复杂的时间序列的数据分类上有不错的表现。  相似文献   

15.
基于神经网络理论的现场总线系统安全性评价的研究   总被引:1,自引:0,他引:1  
本文在介绍神经网络基本原理的基础上,提出了BP神经网络的优化算法:BP-1算法。进而分析了神经网络应用于现场总线系统安全性评价的优点,提出了基于神经网络理论的现场总线系统安全性评价模型和实现方法。最后,以一个原型系统证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号