首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric errors of rotary axes are the fundamental errors of a five-axis machine tool. They directly affect the machining accuracy, and require periodical measurement, identification and compensation. In this paper, a precise calibration and compensation method for the geometric errors of rotary axes on a five-axis machine tool is proposed. The automated measurement is realized by using an on-the-machine touch-trigger technology and an artifact. A calibration algorithm is proposed to calibrate geometric errors of rotary axes based on the relative displacement of the measured reference point. The geometric errors are individually separated and the coupling effect of the geometric errors of two rotary axes can be avoided. The geometry error of the artifact as well as its setup error has little influence on geometric error calibration results. Then a geometric error compensation algorithm is developed by modifying the numeric control (NC) source file. All the geometric errors of the rotary errors are compensated to improve the machining accuracy. The algorithm can be conveniently integrated into the post process. At last, an experiment on a five-axis machine tool with table A-axis and head B-axis structure validates the feasibility of the proposed method.  相似文献   

2.
王调品  李峰 《机床与液压》2021,49(24):88-91
为提高某立式加工中心整机加工精度,借助旋量理论建立完备立式加工中心空间误差模型,在此基础上实现机床空间误差有效补偿.以旋量理论为基础推导并建立机床刀具运动链与工件运动链运动学正解,分析机床21项几何误差原理,在考虑21项几何误差的基础上建立该立式加工中心完备空间误差模型;利用九线法完成各项几何误差辨识;基于旋量运动学正解求解机床运动学逆解后得出运动轴实际运动路径,并通过体对角线实验对比补偿前后的效果.结果表明:所提补偿方法补偿效果显著,验证了机床空间误差模型的准确性,实现了提高机床加工精度的目的.  相似文献   

3.
A novel capacitance–sensor based multi-degree-of-freedom (DOF) measurement system has been developed for measuring geometric errors of a miniaturized machine tool (mMT) overcoming the size limitations. In the present work five geometric error components of a three-axis mMT are measured simultaneously along each axis and the squareness errors are determined by the slopes of straightness error profiles. Least-squares fitting method is used to represent the analytical models of geometric errors. A kinematic chain consisting of various structural members of mMT is introduced to establish the positional relationships among its coordinate frames. Based on this kinematic chain a general volumetric error model has been developed to synthesize all geometric error components of a miniaturized machine tool. Then, a recursive compensation method is proposed to achieve error compensation efficiently. Test results show that the positioning accuracy of miniaturized machine tool has been improved with compensation.  相似文献   

4.
This paper presents a general and systematic approach for geometric error modeling of machine tools due to the geometric errors arising from manufacturing and assembly. The approach can be implemented in three steps: (1) development of a linear map between the pose error twist and source errors within machine tool kinematic chains using homogeneous transformation matrix method; (2) formulation of a linear map between the pose error twist and the error intensities of a machine tool; (3) combination of these two models for error separation. The merit of this approach lies in that it enables the source errors affecting the compensatable and uncompensatable pose accuracy of the machine tool to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement by suitable measures, i.e. component tolerancing in design, manufacturing and assembly processes, and error compensation. Two typical multi-axis machine tools are taken as examples to illustrate the generality and effectiveness of this approach.  相似文献   

5.
In order to validate volumetric error compensation methods for five-axis machine tools, the machining of test parts has been proposed. For such tests, a coordinate measuring machine (CMM) or other external measurement, outside of the machine tool, is required to measure the accuracy of the machined part. In this paper, a series of machining tests are proposed to validate a compensation strategy and compare the machining accuracy before and after the compensation using only on-machine measurements. The basis of the tests is to machine slots, each completed using two different rotary axes indexations of the CNC machine tool. Using directional derivatives of the volumetric errors, it is possible to verify that a surface mismatch is produced between the two halves of the same slot in the presence of specific machine geometric errors. The mismatch at the both sides of the slot, which materializes the machine volumetric errors is measured using touch probing by the erroneous machine itself and with high accuracy since the measurement of both slot halves can be conducted using a single set of rotary axes indexation and in a volumetric region of a few millimetres. The effect of a compensation strategy is then validated by comparing the surface mismatch value for compensated and uncompensated slots.  相似文献   

6.
This paper presents an integrated machining error compensation method based on polynomial neural network (PNN) approach and inspection database of on-machine-measurement (OMM) system. To improve the accuracy of the OMM system, geometric errors of the CNC machining center and probing errors are compensated. Machining error distributions of a specimen workpiece are measured to obtain error compensation parameters. To efficiently analyze the machining errors, two machining error parameters, Werr and Derr, are defined. Subsequently, these parameters can be modeled using the PNN approach, which is used to determine machining errors for the considered cutting conditions. Consequently, by using an iterative algorithm, tool path can be corrected to effectively reduce machining errors in the end-milling process. Required programs are developed using Ch language, and modified termination method are applied to reduce computation times. Experiments are carried out to validate the approaches proposed in this paper. The proposed integrated machining error compensation method can be effectively implemented in a real machining situation, producing much fewer errors.  相似文献   

7.
基于多体系统理论的车铣中心空间误差模型分析   总被引:2,自引:0,他引:2  
数控机床的误差建模是进行机床运动设计、精度分析和误差补偿的关键技术,也是保证机床加工精度的重要环节.本文利用多体系统理论来构建超精密数控机床的几何误差模型,该模型简便、明确,不受机床结构和运动复杂程度的限制,为计算机床误差、实现误差补偿和修正控制指令提供了理论依据.在机床实际应用中,可以利用由精密机床误差建模所推导出的几何位置误差来修正理想加工指令,控制机床的实际运动,从而实现几何误差补偿,提高机床加工精度.  相似文献   

8.
为了改变机床空间误差综合性的测量手段和补偿技术在国内机床制造和生产中应用较少的现状和研究数控机床空间精度提升方法,介绍数控机床平动轴的21项误差和激光跟踪仪的空间误差测试原理,阐述测量与辨识机床空间误差的步骤和方法。在桥式五轴加工中心上进行空间误差测试,给出数控机床空间误差结果,并生成误差补偿文件,通过西门子的VCS功能进行了误差补偿。并对比分析了补偿前后的21项误差,对补偿前后数据的差异进行原因分析,并通过对机床空间体对角线的测量验证了空间误差测量与补偿的实际效果,补偿后误差缩小为原来的11.2%,应用该技术能够大大提高机床的空间精度。  相似文献   

9.
黄强  邓萌  钟开英 《机床与液压》2021,49(15):87-92
采用空间误差补偿技术,可有效提高数控机床的空间定位精度。以一台精密卧式加工中心为对象,系统阐述其几何误差补偿中的关键问题及解决方案。通过三维误差建模与分析,得到该机床的21项几何误差中有17项需要测量和补偿,另外4项误差对机床定位精度的影响甚微。以此为依据,设计误差测量及补偿方案,并给出误差的具体测量方法和补偿结果。结果表明:经过一次系统地误差测量与补偿,精密卧式加工中心的空间定位精度可以提高50%~70%;合理规划和实施空间误差测量,可大幅提高测量效率。  相似文献   

10.
High-precision machining by measurement and compensation of motion error   总被引:4,自引:0,他引:4  
This paper describes a systematic method to model and compensate geometric errors of machine tools. In order to separate geometric errors from other errors, measured errors are analyzed in the frequency domain by using the Fourier series. Then, the frequency components corresponding to geometric errors are selected based on the repeatability of their wavelength. Finally, the components are reconstructed and forwarded for the compensation by a fine motion drive. A CNC machine tool with a fine motion mechanism on the Z-axis was developed to compensate the error components in the Z direction on the XY plane. A flat surface machining with non-rotational cutting tools was tested to validate our approach. On the plane of 45 mm×70 mm, the fluctuation of the relative displacement was reduced from 1.3 to 0.5 μm P-V. Machining experiments with a single-crystal diamond tool were also carried out and the straightness of the profile curve was reduced from 1.0 to 0.4 μm. The result of the experiments showed that the geometric errors were compensated separately from the vibration due to the bending mode of the machine column.  相似文献   

11.
A unified framework of error evaluation and adjustment in machining   总被引:3,自引:1,他引:2  
Errors of machine tool, fixture, and datum on workpiece to be machined influence the machining accuracy of the workpiece. The objective of this paper is to provide a framework for abstracting an error model that integrates three types of errors, i.e., machine tool, fixture, and datum errors, into a unified one. Differential motion theory is used to build the evaluation model of three types of errors. The resultant deviation model of the tool with respect to the workpiece is derived by using the model. For the purpose of eliminating the deviation, the resultant geometric variation is mapped into the locator errors on the fixture. Then the position and orientation errors of the tool with respect to the workpiece may be reduced by adjusting the length of locators. Finally, the effectiveness of the resultant deviation model is verified by examples.  相似文献   

12.
Although error modeling and compensation have given significant results for three-axis CNC machine tools, a few barriers have prevented this promising technique from being applied in five-axis CNC machine tools. One crucial barrier is the difficulty of measuring or identifying link errors in the rotary block of five-axis CNC machine tools. The error model is thus not fully known. To overcome this, the 3D probe-ball and spherical test method are successfully developed to measure and estimate these unknown link errors. Based on the identified error model, real-time error compensation methods for the five-axis CNC machine tool are investigated. The proposed model-based error compensation method is simple enough to implement in real time. Problems associated with the error compensation in singular position of the five-axis machine tool are also discussed. Experimental results show that the overall position accuracy of the five-axis CNC machine tool can be improved dramatically.  相似文献   

13.
针对现阶段机床空间误差模型不完整且传统灵敏度分析存在局限性,导致其关键几何误差溯源不准确,以及关键几何误差判定结果难以量化验证的问题,以某立式加工中心为研究对象,提出一种机床关键几何误差判定与量化验证方法。以旋量理论为基础,研究某立式加工中心空间误差建模,以输出机床完整空间误差模型;在此基础上,以基于传统局部灵敏度分析为基础,利用误差贡献度因子判定机床关键几何误差;借助数值模拟实验对判定结果进行量化验证。结果表明:相较于传统灵敏度分析结果,利用误差贡献度因子判定关键几何误差的结果更准确;基于误差贡献度因子的判定结果,不仅能量化几何误差相对机床空间误差的影响程度,同时可为机床部件制造精度设计提供理论参考。  相似文献   

14.
Sculptured surface machining is a time-consuming and costly process. It requires simultaneously controlled motion of the machine axes. However, positioning inaccuracies or errors exist in machine tools. The combination of error motions of the machine axes will result in a complicated pattern of part geometry errors. In order to quantitatively predict these part geometry errors, a new application framework ‘enhanced virtual machining’ is developed. It integrates machine tool error models into NC machining simulation. The ideal cutter path in the NC program for surface machining is discretized into sub-paths. For each interpolated cutter location, the machine geometric errors are predicted from the machine tool error model. Both the solid modeling approach and the surface modeling approach are used to translate machine geometric errors into part geometry errors for sculptured surface machining. The solid modeling approach obtains the final part geometry by subtracting the tool swept volume from the stock geometric model. The surface modeling approach approximates the actual cutter contact points by calculating the cutting tool motion and geometry. The simulation results show that the machine tool error model can be effectively integrated into sculptured surface machining to predict part geometry errors before the real cutting begins.  相似文献   

15.
This paper presents the precision enhancement of five-axis machine tools according to differential motion matrix, including geometric error modeling, identification and compensation. Differential motion matrix describes the relationship between transforming differential changes of coordinate frames. Firstly, differential motion matrix of each axis relative to tool is established based on homogenous transformation matrix of tool relative to each axis. Secondly, the influences of errors of each axis on accuracy of tool are calculated with error vector of each axis. The sum of these influences is integration of error components of machine tool in coordinate system of tool. It endows the error modeling clear physical meaning. Moreover, integrated error components are transformed to coordinate frame of working table for integrated error transformation matrix of machine tools. Thirdly, constructed Jacobian is established using differential motion matrix of each axis without extra calculation to compensate the integrated error components of tool. It makes compensation easy and convenient with reuse of intermediate. Fourthly, six-circle method of ballbar is developed based on differential motion matrix to identify all ten error components of each rotary axis. Finally, the experiments are carried out on SmartCNC500 five-axis machine tool to testify the effectiveness of proposed accuracy enhancement with differential motion matrix.  相似文献   

16.
This paper proposes a machining test to parameterize error motions, or position-dependent geometric errors, of rotary axes in a five-axis machine tool. At the given set of angular positions of rotary axes, a square-shaped step is machined by a straight end mill. By measuring geometric errors of the finished test piece, the position and the orientation of rotary axis average lines (location errors), as well as position-dependent geometric errors of rotary axes, can be numerically identified based on the machine׳s kinematic model. Furthermore, by consequently performing the proposed machining test, one can quantitatively observe how error motions of rotary axes change due to thermal deformation induced mainly by spindle rotation. Experimental demonstration is presented.  相似文献   

17.
以某型数控曲轴磨床作为研究对象,对其结构和运动进行分析,推导出曲轴磨削时理想的砂轮轨迹方程。根据多体系统理论建立含有误差参数的模型,并推导出机床-工件和机床-刀具的运动链位置矩阵,得出机床精密加工的约束方程。对磨床的几何误差进行研究,建立几何误差模型。为快速、准确辨识出各项几何误差,提出一种混合SAPSO-GA算法。通过对比球杆仪测量补偿前后的运动轨迹,分析补偿效果。结果表明:所提方法提高了辨识准确性,通过补偿大大提高了曲轴随动磨床的加工精度。  相似文献   

18.
Accuracy of CNC machined components is affected by a combination of error sources such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other errors like tool deflection and geometrical errors that have a big portion of total error need more sophisticated solutions. Conventional error reduction methods are considered as low efficiency and human dependent methods. Most of recently developed solutions cannot fulfill workshop needs and are limited to research papers. In the present study, machining code modification strategy has been considered as an applicable and effective solution to enhance precise machined components. Appropriate tool deflection estimation model as well as geometrical error analyzing methods have been selected and complementary algorithms for compensation of these errors have been developed. Metal cutting process has been modeled in a 3D simulation environment and implemented in force/deflection calculations. A software has been developed to generate compensated tool path NC program by tracing the initial tool path and compensating deflection/geometry deviations. The new procedure developed in the present work has been validated by machining Spline contours. The results show that using the new method, accuracy of machined features can be improved by about 8-10 times in a single pass.  相似文献   

19.
Computer-aided accuracy enhancement for multi-axis CNC machine tool   总被引:2,自引:0,他引:2  
A computer-aided error compensation scheme has been developed to enhance the accuracy of multi-axis CNC machine tools by compensating for machine geometric and thermal errors in software way. Stationary geometric errors including the coupling effect of linkage errors between machine slides are calibrated off line. Dynamic thermal errors are predicted on line by an artificial neural network model. Because machine errors are variant with the cutting time and slide positions, a PC based compensation controller has been developed to upgrade commercial CNC controllers for real-time error compensation. The real-time compensation capability is achieved by digital I/0 communication between the compensation controller and CNC controller without the need of any hardware modification to the machine servo-drive loops. The compensation scheme implemented on a horizontal machining center has been proven to improve the machine accuracy by one order of magnitude using a laser interferometer and cutting test.  相似文献   

20.
针对多轴联动数控机床加工精度误差补偿问题,从分析数控机床误差产生机制和建立精度误差补偿模型的角度,提出基于多体系统理论的数控机床加工精度几何误差预测模型。分析B-A摆头五轴龙门数控机床的拓扑结构关系、低序体阵列、各典型体坐标变换,推导出B-A摆头五轴龙门数控机床的精度几何误差预测函数模型。采用平动轴十二线法误差参数辨识算法,计算出B-A摆头五轴数控机床21项空间几何误差,为精度几何误差预测函数提供有效的误差参数。该精度误差参数建模方法,对不同结构和运动关系的数控机床具有通用性,为后续数控机床误差动态实时补偿提高切削加工精度提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号