共查询到18条相似文献,搜索用时 78 毫秒
1.
极限学习机( Extreme Learning Machine , ELM)是一种新型的单馈层神经网络算法,克服了传统的误差反向传播方法需要多次迭代,算法的计算量和搜索空间大的缺点,只需要设置合适的隐含层节点个数,为输入权和隐含层偏差进行随机赋值,一次完成无需迭代。研究表明股票市场是一个非常复杂的非线性系统,需要用到人工智能理论、统计学理论和经济学理论。本文将极限学习机方法引入股票价格预测中,通过对比支持向量机( Support Vector Machine , SVM)和误差反传神经网络( Back Propagation Neural Network , BP神经网络),分析极限学习机在股票价格预测中的可行性和优势。结果表明极限学习机预测精度高,并且在参数选择及训练速度上具有较明显的优势。 相似文献
2.
支持向量机 (Support vector machine, SVM) 在语种识别中已经起到了重要的作用.近些年来,极限学习机 (Extreme learning machine, ELM) 在很多领域取得了成功的应用.相比于 SVM, ELM 最大的优点在于极易实现、训练速度快,而且通常可以取得与 SVM 相近甚至优于 SVM 的识别性能. 鉴于 ELM 这些优异的特点,本文将 ELM 引入到语种识别中,并针对 ELM 由于随机初始化模型参 数所带来的潜在问题,提出了流形正则化极限学习机 (Manifold regularized extreme learning machine, MRELM) 算法.实验结果表明,在高斯超矢量(Gaussian supervector, GSV)特征空间上,相对于 SVM 基线系统,该算法对30秒语音的识别性能有明显的提升. 同时该算法也可以成功地应用到 i-vector 特征空间中,取得与当前主流的打分算法相近的识别性能. 相似文献
3.
论文将Curvelet变换用于人脸表情识别,提出了一种基于Curvelet变换与SVM相结合的人脸表情识别方法.在表情特征提取过程中,还采用了主分量分析方法对Curvelet变换分解后得到的系数特征进行降维处理.分别对JAFFE和Cohn-Kanade表情数据库进行了实验,结果表明该方法可以有效地对人脸表情进行识别,与其他方法比较,采用该文方法得到人脸表情的平均识别率明显更优. 相似文献
4.
针对脑卒中患者的患病风险诊断问题,使用临床医学数据,结合机器学习算法实现高准确率的预测和辅助诊断。将数据经过冗余剔除和缺失值填充,并通过主成份分析将预处理后的高维特征数据融合,采用极限学习机进行预测。通过对1188位对象采用十字交叉验证实验,预测模型的准确率达到97.13%,优于其他预测算法。实验结果说明,此预测模型在脑卒中的患病诊断上有高准确度和可靠性,可为医生的临床诊断提供有力支撑。 相似文献
5.
极限学习机在岩性识别中的应用 总被引:3,自引:0,他引:3
基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别.该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度.在确定了最优参数的基础上,建立了ELM的岩性分类模型,并且将ELM的分类结果与SVM进行对比.实验结果表明,ELM以较少的神经元个数获得与SVM相当的分类正确率,并且ELM参数选择比SVM简便,有效降低了训练速度,表明了ELM应用于岩性识别的可行性和算法的有效性. 相似文献
6.
基于FLD特征提取的SVM人脸表情识别方法 总被引:5,自引:1,他引:5
摘 要 本文通Fisher’s Linear Discriminant(FLD)提取静态人脸表情特征,采用“一对一”支持向量机分类器进行了多种表情识别。在JAFFE人脸表情库上分别进行了测试人参与训练和不参与训练两种方案仿真实验,并与最近邻分类器进行比较,支持向量机都取得了更好的识别结果,说明了支持向量机分类器应用于表情识别是可行的 相似文献
7.
研究人脸表情识别问题,应有效挺取脸表情特征,消除与识别无关的信息.传统的Gabor滤波器在人脸表情特征提取过程中,针对存在提取特征时间较长和特征数据存在冗余性的缺点,提出了一种Gabor和PCA相结合的特征提取,并通过支持向量机进行表情识别方法.方法首先对人脸表情进行预处理得到纯表情图像,采用Gabor提取表情特征,用PCA进行数据冗余处理和用支持向量机识别人脸表情并进行仿真.仿真结果表明,相对于传统的Gabor方法,不仅提高了人脸表情识别的正确率,而且加快了识别的速度.改进办法非常适合于人脸表情图像的分析. 相似文献
8.
极限学习机(Extreme Learning Machine,ELM)是一种单隐层前馈神经网络(Single-hidden Layer Feedforward Neural Networks,SLFN),它相较于传统神经网络算法来说结构简单,具有较快的学习速度,以及良好的泛化性能等优点。由最小二乘法(Least Square,LE)计算得出的输出权值,往往由于设计矩阵为奇异矩阵,得到的权值有较大偏差,遇到有噪声的数据时,算法的鲁棒性无法保证。主成分估计是对最小二乘估计的一种改进算法,主成分估计能有效的改善设计矩阵奇异造成的影响,能有效的提高网络模型的鲁棒性和抗噪能力。提出了一种基于主成分估计的极限学习机方法(PC-ELM),实验结果表明,此方法能有效提高算法的鲁棒性和泛化能力。 相似文献
9.
基于主成分分析--改进的极限学习机方法的精对苯二甲酸醋酸含量软测量 总被引:1,自引:0,他引:1
目前,化工生产过程日益复杂,生产操作变量越来越多,由于客观条件的限制,有些重要的过程参数无法通过直接测量的手段精确测得.通过软测量可实现复杂化工生产过程重要参数的精确测量,进而指导化工企业的生产,提高化工生产的产出效率,是解决问题的一个有效的方法.针对复杂化工过程软测量建模中存在的问题,本文提出了一种改进的极限学习机模型(improved extreme learning machine,IELM).一方面将主成分分析(principal component analysis,PCA)方法应用到极限学习机(ELM)里,通过PCA对模型输入变量进行主成分分析,不仅去除了变量间的线性相关关系,而且对高数据进行降维处理,最终降低了极限学习机的输入复杂性;另一方面利用相关系数判断输入主元数据与输出数据间的相关关系,从而得到正相关输入和负相关输入,依据这两类数据构造ELM模型,使得每类输入数据对网络的输出有同样的作用,进一步提高极限学习机的泛化能力.最后建立了PCA-IELM模型,首先用标准数据库的Triazines数据集验证该模型有效性,随后得出了基于PCA-IELM方法的精对苯二甲酸(purified terephthalic acid,PTA)溶剂脱水塔塔顶醋酸含量软测量模型,仿真结果表明PCA-IELM模型处理高维数据时较传统的ELM算法具有稳定性好,建模精度高等特点,为神经网络在复杂化工应用领域提供新思路. 相似文献
10.
多分类问题一直是模式识别领域的一个热点,提出了一种基于纠错输出编码和支持向量机的多分类器算法。根据通信编码理论设计纠错输出编码矩阵;按照该编码矩阵设计若干个互不相关的子支持向量机,根据编码原理将它们融合为一个多分类器。为了验证本分类器的有效性,采用Gabor小波提取人脸表情特征,应用二元主成分(2DPCA)分析法对提取的特征进行降维处理,应用该分类器进行了人脸表情的识别。实验结果表明,提出的方法能有效提高人脸表情的识别率,并具有极好的鲁棒性。 相似文献
11.
预测是一种根据已知数据在过去一定时间段内呈现出的发展的规律性对未来发展趋势进行描述的行为.近年来,预测被应用到很多领域,如电价预测、股票价格预测和气象预测等.然而传统的预测方法由于其精度不高或速度不快等问题,无法满足当今预测领域的需求.针对传统预测方法存在的问题,基于组合预测的思想,结合强化学习的累积函数的概念,提出了结合灰色预测模型和极限学习机的组合预测方法.算法在微软股票信息、Mackey-Glass时间序列数据和台湾液晶屏制造业的制造数据等实验数据集上进行了相关实验,结果表明该算法是有效的. 相似文献
12.
针对目前玻璃空瓶回收再生产过程中造成瓶口缺陷破损的在线实时检测难题,提出一种基于极限学习机(Extreme Learning Machine, ELM)的检测算法。首先对采集的瓶口进行预处理,通过研究表面缺陷,提取灰度方差等6种表面特征。然后运用遗传算法对极限学习机的输入层层的阈值和权值进行优化,提高算法的检测精度。最后现场选取569个样本对所设计ELM分类器进行训练学习与测试,并与LVQ算法、BP分类器对比实验。结果表明该算法能够满足对机器视觉检测系统缺陷检测高速高精度的要求。 相似文献
13.
肝硬化的计算机辅助诊断对肝脏疾病的早期治疗和诊断具有重要意义。针对B超图像中肝硬化病变区域边缘模糊和回声不均匀、尺度因素影响等问题,提出了改进的LBP算法并提取了相应的SLBP特征。该特征较传统的纹理特征更准确地描述了B超图像中肝硬化病变的特征,结合二维Gabor变换,解决了上述难题。鉴于传统的机器学习方法的训练时间较长,采用基于超限学习机的训练方法,并首次将其应用于肝硬化识别。实验结果表明,所提方法对测试集的分类准确率达到95.4%,在时间效率上较传统方法有很大提高。ROC曲线表明,提出的分类方法在准确率和泛化能力上均优于传统方法,有助于肝硬化的临床诊断。 相似文献
14.
针对在采用机器视觉的无夹具定位的壳体类零件几何参数检测过程中,需要先智能识别零件几何特征以规划检测路径的问题,提出一种基于监督式机器学习的几何特征智能识别方法。利用壳体零件待识别特征的中心位置关系构成特征矩阵,利用监督式机器学习算法进行识别,提出一种基于特征唯一性的纠错方法对分类过程中产生的识别错误进行纠正。对于所涉研究实例,零件共有4个待识别孔,在5次监督式训练后智能识别准确度达100%。 相似文献
15.
为了提高人脸识别率,本文提出了一种增量学习支持矢量机(SVM)人脸识别方法,有效地对SVM的参数进行更新。提出的方法采用高斯概率模型描述SVM的参数统计特征,在无需额外存储训练数据的前提下,采用增量学习SVM的方式实现参数的更新;并通过最小化分类误差准则最大化SVM两类输出值概率分布间的距离。详细的实验以及与现有方法的比较结果表明,提出的识别方法具有更好的识别性能。 相似文献
16.
17.
神经网络极速学习方法研究 总被引:57,自引:0,他引:57
单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈.产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(Back Propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定.因此算法的计算量和搜索空间很大.针对以上问题,借鉴ELM的一次学习思想并基于结构风险最小化理论提出一种快速学习方法(RELM),避免了多次迭代和局部最小值,具有良好的泛化性、鲁棒性与可控性.实验表明RELM综合性能优于ELM、BP和SVM. 相似文献
18.
极速学习机不仅仅是有效的分类器,还能应用到半监督学习中.但是,半监督极速学习机和拉普拉斯光滑孪生支持向量机一样是一种浅层学习算法.深度学习实现了复杂函数的逼近并缓解了以前多层神经网络算法的局部最小性问题,目前在机器学习领域中引起了广泛的关注.多层极速学习机(ML-ELM)是根据深度学习和极速学习机的思想提出的算法,通过堆叠极速学习机-自动编码器算法(ELM-AE)构建多层神经网络模型,不仅实现复杂函数的逼近,并且训练过程中无需迭代,学习效率高.我们把流形正则化框架引入ML-ELM中提出拉普拉斯多层极速学习机算法(Lap-ML-ELM).然而,ELM-AE不能很好的解决过拟合问题,针对这一问题我们把权值不确定引入ELM-AE中提出权值不确定极速学习机-自动编码器算法(WU-ELM-AE),它学习到更为鲁棒的特征.最后,我们在前面两种算法的基础上提出权值不确定拉普拉斯多层极速学习机算法(WUL-ML-ELM),它堆叠WU-ELM-AE构建深度模型,并且用流形正则化框架求取输出权值,该算法在分类精度上有明显提高并且不需花费太多的时间.实验结果表明,Lap-ML-ELM与WUL-ML-ELM都是有效的半监督学习算法. 相似文献