首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
CO_2注入过程中沥青质沉淀预测   总被引:8,自引:1,他引:8  
注入CO2提高原油采收率过程中可能出现沥青质固相沉淀。鉴于沉淀沥青质的强极性,采用Anderko建立的缔合混合物状态方程描述沥青质的相行为,并由此推导沉淀沥青质组分的逸度计算公式,建立注气过程中气-液-沥青质三相相平衡数值计算模型。以某油田实际原油为例,利用模型计算了CO2注入过程中沥青质沉淀量,结果与实验数据相近,表明沥青质沉淀预测模型具有一定的准确性。在此基础上,预测了注气过程中沥青质沉淀变化规律:注入压力一定的情况下,沥青质沉淀量随着注入CO2量增加呈现先增加后减小的趋势,当CO2-原油体系中出现气相时,沥青质沉淀量达到最大;当CO2-原油体系中CO2物质的量分数一定时,在泡点压力附近沥青质沉淀量达到最大。图3表1参10  相似文献   

2.
原油沥青质初始沉淀压力测定与模型化计算   总被引:1,自引:0,他引:1  
钱坤  杨胜来  刘盼 《断块油气田》2014,21(6):775-778
温度、压力及组成的改变均会造成原油中沥青质产生沉淀,导致储层伤害和井筒堵塞。文中通过自主研制的固相沉淀激光探测系统,用透光率法首次测定了伊朗南阿油田原油样品在不同温度下的沥青质初始沉淀压力;同时利用Nghiem等建立的沥青质沉淀预测的热力学模型对油样沥青质初始沉淀压力进行计算,并与实验结果拟合。结果表明:利用透光率法测定该油田油样,在44,80,123℃下的沥青质初始沉淀压力点分别为42.8,39.7,35.2 MPa;沥青质初始沉淀压力随着温度的升高,在井筒温度范围内呈线性关系。模型计算与实验结果误差不超过15%,所以利用Nghiem模型对原油沥青质的初始沉淀压力进行预测是可靠的。  相似文献   

3.
国内外大量CO2驱矿场实践均发现了沥青质沉淀现象,沥青质沉淀会吸附于孔隙表面、堵塞孔隙喉道,进而导致CO2驱油井产量的下降。为了准确计算CO2驱过程中的沥青质沉淀率,采用状态方程描述气-液相平衡,用正规溶液理论描述固相沥青质的非理想性,建立气-液-固三相相平衡热力学模型,结合物料守恒方程进行油气体系的相平衡计算,进而预测沥青质的沉淀率。运用该模型对某CO2驱原油体系进行了相平衡闪蒸计算,得到沥青质的沉淀率,与实验值相对比平均误差在允许范围之内。  相似文献   

4.
原油正构烷烃沥青质聚沉机理研究及沉淀量测定   总被引:8,自引:3,他引:8  
用IP 143标准方法测定了我国孤岛和草桥原油正构烷沥青质沉淀量。结果表明两种原油的沥青质沉淀量均随沉淀剂分子量增大而减小、随剂油比增大而增大。在原油沥青质 胶质胶束模型的基础上提出了一种新的沥青质聚沉机理 ,该机理的基本假设是原油中沥青质分子以胶束形式存在 ,其中胶核为沥青质缔合物 ,溶剂化层为胶质和溶剂分子。通过分析沉淀剂性质、剂油比、体系温度和压力等对沥青质 胶质胶束稳定性的影响得出了沥青质沉淀点、沉淀量、沉淀物平均分子量以及沉淀物平均颗粒大小随沉淀剂性质和剂油比等因素变化的规律。经比较说明 ,这些规律与本文及文献实验结果相符  相似文献   

5.
向敏  宫敬  杨毅 《天然气工业》2014,34(6):72-77
注气采油是提高原油采收率的主要方式之一,在此过程中准确描述含有沥青质等高分子有机固相物质的油气体系相平衡十分必要。为此,将沉淀的沥青质视为固相,假设标准状态下必须有沥青质沉淀,将标准状态压力和温度引入沥青质固相逸度计算,并同时考虑了标准状态压力和温度对沥青质固相逸度的影响,建立了能模拟沥青质沉淀的气、液、固三相相平衡热力学模型。据该模型计算的结果表明:①能通过比较液相沥青质逸度和固相沥青质逸度大小来判断固相沥青质沉淀的出现。②当注入某油的气体为烃类混合气体时,烃类混合气体的添加使得含沥青质原油的组分发生变化;温度相同时,注气浓度越高,沉淀的压力越大;浓度相同时,温度越低,沉淀的压力越大;当沉淀量一定时,随着注气浓度增加,油品的饱和压力随之增大;相同注气浓度下,当压力高于饱和压力时,随着压力增大,沉淀量减少。③在温度不变的情况下,注入某油的气体为CO2时,其沥青质沉淀量是注CO2浓度的函数且随着CO2浓度的增加,固相(沥青质)的沉淀量不断增大。④在注气驱油过程中,气体的注入极易引发含沥青质原油中沥青质等重质有机物的沉积。  相似文献   

6.
用电导率法研究石油中沥青质沉积问题   总被引:4,自引:1,他引:4  
介绍了检测石油中沥青沉积的电导率方法,考察了加溶剂(正庚烷和甲苯)过程中共体系电导率的变化规律。结果表明,随着溶剂的加入,两种溶剂体系的电导率均呈先升降的趋势,在电导率变化的一阶导数曲线上,正庚烷体系出现一最高点,该点对此不的沥青质沉积起始点,而一般情况下甲苯体系下出现此点,各原油的沥青质沉积起始点明显其相应的减压渣油,表明渣油体系比原油体系更稳定。  相似文献   

7.
为深入认识固定床渣油加氢-催化裂化双向组合技术溶剂芳香性与沥青质稳定性的关系,采用Flory-Huggins模型考察了沙特轻质原油常压渣油的沥青质稳定性,并用溶解度参数关联了溶剂的芳香性。结果表明,Flory-Huggins模型可用于研究渣油体系的沥青质稳定性。随着溶剂芳香性的增加,其溶解度参数增大,沥青质稳定性增强。密度较大、H/C原子比较小的溶剂具有较大的溶解度参数,对沥青质的稳定性较有利。  相似文献   

8.
为深入认识固定床渣油加氢-催化裂化双向组合技术溶剂芳香性与沥青质稳定性的关系,采用Flory-Huggins模型考察了沙特轻质原油常压渣油的沥青质稳定性,并用溶解度参数关联了溶剂的芳香性。结果表明,Flory-Huggins模型可用于研究渣油体系的沥青质稳定性。随着溶剂芳香性的增加,其溶解度参数增大,沥青质稳定性增强。密度较大、H/C原子比较小的溶剂具有较大的溶解度参数,对沥青质的稳定性较有利。  相似文献   

9.
为明确CO_2驱油过程中胶质沥青质沉淀原因,从原油中分离出胶质和沥青质分别与正庚烷和甲苯配置成胶质模拟液和沥青质模拟液,并用2种模拟液分别与CO_2组成不同摩尔分数的二元体系,通过高压显微固相沉淀实验,观察2个体系中固相颗粒的变化规律,探究CO_2对胶质沥青质的作用机理。实验表明:胶质模拟液-CO_2体系中CO_2的摩尔分数达到12.50%时,胶质颗粒发生沉淀,随CO_2含量增加沉淀半径增大;当CO_2摩尔分数增至35.00%时,胶质沉淀开始沉积,发生聚集;当CO_2的摩尔分数大于50.00%时,降低体系压力至泡点压力以下,CO_2先从正庚烷液相中析出,后从液状胶质聚集体中析出。沥青质模拟液-CO_2体系在泡点压力处颗粒半径最大;随CO_2含量增加,沥青质颗粒沉淀半径增大;当CO_2摩尔分数增至60.00%时,沥青质颗粒发生聚集形成沉积。该项研究对于分析CO_2驱过程中胶质沥青质对沉淀的贡献情况、沉淀生成的主要原因以及如何减小沉淀对生产造成的伤害具有重要指导作用,对于增强原油的运移能力进而提高储层原油采收率具有理论指导意义。  相似文献   

10.
凝析油充注对油藏沥青质分子结构的影响   总被引:5,自引:0,他引:5  
用原油沥青质的地球化学研究结果分析油气藏形成条件,前提是油藏沥青质分子结构不因后期天然气或凝析油的再次充注而变化。在塔里木盆地轮南1井产出原油中加入不同体积的石油醚,模拟后期凝析油充注早期油藏的过程,测定不同沉淀条件下原油的沥青质沉淀量变化,并用瞬间热解-色谱-质谱的方法研究沥青质的分子结构。实验结果,原油沥青质随低分子烃类注入量的变化发生沉淀和再溶解,但沉淀出的沥青质分子结构相同。据此认为,低分子烃类加入原油体系不会改变沥青质的分子结构特征,沥青质热解产物能够反映原油的母质结构特征,可以根据该特征进行油/源、油/油对比或探讨混源油的母源类型。图5参19  相似文献   

11.
Borehole blockage caused by asphaltene deposition is a problem in crude oil production in the Tahe Oilfield, Xinjiang, China. This study has investigated the influences of crude oil compositions, temperature and pressure on asphaltene deposition. The asphaltene deposition trend of crude oil was studied by saturates, aromatics, resins and asphaltenes (SARA) method, and the turbidity method was applied for the first time to determine the onset of asphaltene flocculation. The results showed that the asphaltene deposition trend of crude oil by the turbidity method was in accordance with that by the SARA method. The asphaltene solubility in crude oil decreased with decreasing temperature and the amount of asphaltene deposits of T739 crude oil (from well T739, Tahe Oilfield) had a maximum value at 60 o C. From the PVT results, the bubble point pressure of TH10403CX crude oil (from well TH10403CX, Tahe Oilfield) at different temperatures can be obtained and the depth at which the maximum asphaltene flocculation would occur in boreholes can be calculated. The crude oil PVT results showed that at 50 , 90 and 130 o C, the bubble point pressure of TH10403CX crude oil was 25.2, 26.4 and 27.0 MPa, respectively. The depth of injecting asphaltene deposition inhibitors for TH10403CX was determined to be 2,700 m.  相似文献   

12.
A crude oil has four main constituents: saturates, aromatics, resins, and asphaltenes. The asphaltenes in crude oil are the most complex and heavy organic compounds. The classic definition of asphaltenes is based on the solution properties of petroleum residuum in various solvents. Asphaltenes are a solubility range that is soluble in light aromatics such as benzene and toluene, but are insoluble in lighter paraffins. The particular paraffins, such as n-pentane and n-heptane, are used to precipitate asphaltenes from crude oil. Deposition of asphaltenes in petroleum crude and heavy oil can cause a number of severe problems. The precipitation of asphaltene aggregates can cause such severe problems as reservoir plugging and wettability reversal. Asphaltenes can precipitate on metal surface. Cleaning the precipitation site as well as possible appears to slow reprecipitation. To prevent deposition inside the reservoir, it is necessary to estimate the amount of deposition due to various factors. The processes can be changed to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective. Asphaltene flocculation can be controlled through better knowledge of the mechanisms that cause its flocculation in the first place. The processes can be controlled to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective.  相似文献   

13.
针对CO2驱油过程中易造成沥青质等重有机质沉积,导致原油组分发生改变,影响驱油效果这一问题,考察了不同原油沥青质含量、岩心渗透率条件下沥青质的沉积量及CO2驱油效果,研究了CO2驱替过程中沥青质沉积和原油采收率的变化规律。实验结果表明,CO2驱油过程中引起的沥青质沉积与岩心渗透率、原油初始沥青质含量直接相关;相同条件下,低渗透岩心对沥青质沉积的影响更为明显;此外,随着沥青质沉积量的增加,CO2驱的采收率降低。  相似文献   

14.
CO2在原油中扩散和溶解,使得原油体积膨胀和黏度降低的同时,原油组分也发生变化,可能引起沥青质等重有机质沉积,伤害储层,因此需全面评价CO2在原油中的扩散和影响因素以及可能引起的沥青质沉积程度。用压力降落法测定了压力和沥青质含量对CO2在原油中的扩散系数和溶解度的影响。结果表明,随着压力增加,CO2在原油中的扩散系数成线性增加,溶解度先增加后降低。随原油沥青质含量的增加,CO2扩散系数降低,溶解度增加。CO2扩散后的原油沥青质含量大幅降低,最高降幅达94.6%,表明CO2在扩散过程中引起了沥青质的沉积。  相似文献   

15.
Problems associated with asphaltene deposition during the production, transportation, and processing of crude oils are some of the important issues in oil industry. Thus, accurate identification of structure and surface morphology of asphaltene should be investigated. In this study, asphaltene are isolated from an Iranian heavy crude oil under three different experimental conditions by using heat (thermal deasphaltene), heat and toluene (thermal-toluene deasphaltene), and n-heptane (n-heptane deasphaltene) as precipitation agent. The effect of isolation method on the crystallite structure and surface morphology of asphaltene is characterized by X-ray diffraction and scanning electron microscope technique, respectively. It is found that extraction procedure has a strong influence on the physicochemical properties of the isolated asphaltene. The results showed that at thermal deasphaltene solid such as micellar the shape was the dominant morphology of asphaltene particles that cause the least height of the crystallites and number of aromatic sheets in a stacked cluster. This morphology changes to semisolid smooth surface and agglomerated asphaltene with cavities by altering the separation method to thermal-toluene deasphaltene and n-heptane deasphaltene. The maximum heights of the crystallites belong to n-heptane deasphaltene.  相似文献   

16.
In a previous study we obtained reference values of solubility parameter of two Brazilian crude oils based on asphaltene flocculation data. In this work, these reference values were compared to those obtained by nine models available in the literature and oil compatibility data were experimentally obtained to enhance the modeling evaluation. These evaluations allowed to select models to predict asphaltene stability and oil compatibility. As a result, only our method along with three other methods can accurately predict the experimental results of the compatibility between oil mixtures, and the conclusion is that usually recommended models are not the best choice.  相似文献   

17.
Asphaltene precipitation is caused by a number of factors, such as the variation of pressure and temperature, the change in composition and the mixing of oil with diluting solvents. The deposition of asphaltene precipitation is one of the main problems with the oil industries, appearing in the well bore, the well tubing and the refining processes. This causes an increase in the operating costs and imposes the costs of cleaning and washing well tubing as well. Therefore, it would be economically beneficial to know under what conditions and to what amount the asphaltene precipitates.In this paper, a model is presented based on the Flory–Huggins theory of polymeric solutions. Because the interaction parameter term plays a key role in the asphaltene precipitation, a correlation is proposed to account for the effect of the solvent ratio in addition to molecular weight. Several adjustable parameters in terms of the interaction parameter are determined in this work using a series of experimental precipitation data from a crude oil sample of a field located in the southwest of Iran (oil sample 1), and applying a robust optimization method (the differential evolution). Regarding the influence of the solubility parameter on the accuracy of the final results, a comparison is made between the m-ER, PR and the SRK EOSs. Finally, the obtained results from the comparison between the asphaltene precipitation amounts of various solvents and the existing experimental values for another group of data from oil sample 1, and two other oil samples verify the accuracy of the presented model.  相似文献   

18.
Abstract

The study of asphaltene precipitation properties has been motivated by their propensity to aggregate, flocculate, precipitate, and adsorb onto interfaces. The tendency of asphaltenes to precipitation has posed great challenges for the petroleum industry. The most important parameters in asphaltene precipitation modeling and prediction are the asphaltene and oil solvent solubility parameters, which are very sensitive to reservoir and operational conditions. The driving force of asphaltene flocculation is the difference between asphaltene and the oil solvent solubility parameter. Since the nature of asphaltene solubility is yet unknown and several unmodeled dynamics are hidden in the original systems, the existing prediction models may fail in prediction the asphaltene precipitation in crude oil systems. One of ways in modeling such systems is using intelligent techniques that need some information about the systems; so, based on some intelligent learning methods it can provide a suitable model. The authors introduce a new implementation of the artificial intelligent computing technology in petroleum engineering. They have proposed a new approach to prediction of the asphaltene precipitation in crude oil systems using fuzzy logic, neural networks, and genetic algorithms. Results of this research indicate that the proposed prediction model with recognizing the possible patterns between input and output variables can successfully predict and model asphaltene precipitation in tank and live crude oils with a good accuracy.  相似文献   

19.
Methods of detecting and characterizing asphaltenes abound in the literature, but most can raise significant levels of controversy. Because of real differences between samples, it can be difficult for one lab to validate the results of another. In this work, a suite of seven crude oil samples, including two with recognized asphaltene problems and a sequence of three hydrotreater product fluids, have been selected for comparative testing by relatively simple techniques at ambient conditions. The onset of flocculation in response to addition of heptane was identified in batch mode by microscopic observation with the onset solubility conditions calculated from refractive index measurements. These were compared to continuous heptane titrations of toluene solutions of oil with an optical detection system. At essentially infinite dilution, solubility parameter can be calculated from the known properties of toluene and heptane. Further characterization of some asphaltene fractions was provided by measurements of the amount of precipitate, by FTIR, and by elemental analysis. The results demonstrate similarities and differences in the properties measured by these different techniques and help to highlight some of the difficulties of such comparisons of asphaltenes and their stability.  相似文献   

20.
The influence of pressure on the onset of flocculation of asphaltenes was calculated in the region from 1 to 300 bar and from 50 to 100°C. These calculations are the counterpart to our experimental data which, recently, have been reported in part 1 of an equally titled article [9]. As gas component methane and as precipitant i-octane were used. The asphaltene flocculation was considered to be a liquid-liquid equilibrium. For modelling the van der Waals equation of state (vdW-EOS) in the framework of continuous thermodynamics was applied. The composition of the crude oil was described by a continuous distribution function with respect to the solubility parameter δ of the Scatchard-Hildebrand theory. Within the distribution the asphaltenes represent the species with the highest δ-values. For oils with a very low content of asphaltenes the model developed describes the experimental flocculation data reasonably. In accordance to the experimental data the model predicts that, in the considered pressure range, without addition of i-octane asphaltene flocculation does not occur. However, on contrary to the experimental results, the model predicts the asphaltenes to show a higher flocculation tendency with increasing asphaltene content of the crude oil. For very high asphaltene contents the model even completely fails. Probably, the reason of this lack is the disregarding of asphaltene association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号