首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
WC对Ni-Cr3C2激光熔覆层组织与性能的影响   总被引:1,自引:0,他引:1  
钟文华  刘贵仲  高原  葛大梁 《热加工工艺》2012,41(10):153-156,161
研究了WC加入量对镍基碳化铬熔覆层显微组织、横截面微观硬度及熔覆层耐磨性的影响。结果表明,WC的加入使涂层组织中出现了弥散分布的白色相,白色相由白亮色的芯部及浅白色的环形相组成,白色相从熔覆层底部至表面呈先增后减的分布规律。弥散分布的白色相使熔覆层硬度提高,当WC加入量为2wt%时,涂层平均显微硬度约1096 HV,比未加WC的平均硬度(788 HV)高308 HV。WC的加入会增加材料的脆性,影响涂层使用寿命。当WC加入量为2wt%时,熔覆层硬度与脆性增加达到最佳匹配值,对提高材料耐磨性有利。  相似文献   

2.
截齿表面感应熔覆WC增强Fe基熔覆层的研究   总被引:1,自引:1,他引:0  
采用高频感应熔覆技术在采煤机截齿前端表面制备高耐磨的WC增强Fe基熔覆层,结果表明:熔覆层与基体为冶金结合,组织主要为奥氏体、鱼骨状共晶体及少量WC,增强相由(Cr,Fe)7C3,WC,Fe3 W3C及Fe3C等组成,熔覆层厚度约2 mm,硬度达63.6HRC,显微硬度平均值为1 007.9HV0.3,耐磨性为基体的4...  相似文献   

3.
激光熔覆Co+Cr3C2复合涂层的组织与性能   总被引:4,自引:1,他引:4       下载免费PDF全文
在低碳钢表面激光熔覆了钴基合金涂层(Co60)以及添加不同含量Cr3C2(20%,40%,60%,质量分数)的Co Cr3 C2复合涂层,比较研究了几种涂层的组织与性能.结果表明,Co60涂层主要由初生γ-Co枝晶及其间的共晶组织γ Cr23 C6组成;Co Cr3 C2涂层主要由未熔Cr3C2、杆状或块状的富Cr碳化物及其间的细小枝晶组织组成,组成相主要为γ-Co、Cr7 C3,Cr23 C6和未熔Cr3 C2.添加的Cr3 C2改变了涂层的凝固特征,并细化了组织.随着Cr3 C2加入量的提高,未熔Cr3 C2以及凝固过程中形成的富铬碳化物明显增加.三种Co Cr3 C2涂层的硬度、耐磨性、高温抗氧化性与耐蚀性比Co60涂层均有明显的提高.随Cr3 C2加入量的提高,复合涂层的高温抗氧化性与耐蚀性均提高,而Co 40%Cr3 C2涂层的耐磨性最好.  相似文献   

4.
以Fe/Cr/C粉末为添加粉末,采用CO2激光扫描和电子束扫描在903钢表面原位合成(Cr,Fe)7C3表面复合层。对两种熔覆层进行金相分析、扫描电镜(SEM)和X射线衍射(XRD)分析对比。结果表明: 电子束熔覆层的组织均匀性较好,表层有大量(Cr,Fe)7C3初生碳化物,底部则为初生奥氏体枝状晶和(Cr,Fe)7C3/γFe共晶组织。基于电子束扫描时束流可变的工艺特点,实际应用时容易制备可控组织梯度的熔覆层。激光熔覆层也具有一定的组织梯度,但其组织均匀性较差,表层主要有γFe枝状晶和(Cr,Fe)7C3/γFe共晶组织及马氏体组织,底部则主要为马氏体组织。两种熔覆层的显微硬度体现了其中碳化物的数量及分布,电子束熔覆层碳化物含量较高,其显微硬度也较大。低应力磨损状态下,电子束熔覆层和激光熔覆层的相对耐磨性分别是基材的10.5倍和4.3倍。  相似文献   

5.
采用激光技术在45钢表面熔覆Ni-WC/Cr3C2涂层,采用SEM,XRD等手段进行熔覆层的显微组织、相组成及成分分析,并测试熔覆层的耐蚀性和耐磨性能.结果表明,Ni-WC/Cr3C2熔覆层底部生成方向性较强的胞状树枝晶,中上部组织为细小的树枝晶.涂层主要是由γ-(Fe, Ni),M23C6型碳化物以及未熔的WC颗粒组成.细晶强化、合金元素固溶强化以及碳化物强化的共同作用,使熔覆层的显微硬度提高至711HV0.1.熔覆层耐蚀性明显改善,腐蚀电流密度约为45钢的1/4.随着摩擦速度的增大,激光熔覆Ni-WC/Cr3C2涂层和45钢磨损量增加,且熔覆层的磨损量低于45钢,表明其耐磨性能明显提高.  相似文献   

6.
目的 为了提高3Cr13马氏体不锈钢的硬度和耐磨性,在其表面制备TiC/Fe基熔覆层,分析熔覆层组织的均匀性及碳化物类型,探究碳化物演变机理和对熔覆层硬度的影响规律。方法 采用等离子同步送粉熔覆,在3Cr13不锈钢基材上熔覆球形TiC/Fe基熔覆层。利用扫描电子显微镜、X射线衍射、能谱仪分析熔覆层微观形貌特征、相组成以及析出相的元素分布规律,利用显微硬度计测量熔覆层的硬度。结果 随着TiC添加量的增加,熔覆层中的Ti和C元素含量也增加,说明有部分TiC熔解。未添加TiC的熔覆层组织主要是Fe-Cr固溶体和(Fe、Cr)7C3,TiC/Fe基熔覆层的为Fe-Cr固溶体和TiC、(Fe、Cr)3C2、(Fe、Cr)7C3。两种熔覆层中的析出相主要以(Fe、Cr)7C3为主,但在TiC/Fe基熔覆层中还存在其熔解后重新析出的TiC及过渡相(Fe、Cr)3C2。TiC添加量增加,熔覆层显微硬度也增加。结论 TiC/Fe基熔覆层中的第二相除(Fe、Cr)7C3,还有原始TiC、析出的TiC和(Fe、Cr)3C2。在研究范围内,随着TiC添加量增加,熔覆层中熔解的TiC量也增加。析出的TiC可以作为(Fe3Cr4)C3的有效形核质点,促进(Fe3Cr4)C3的形成,形成过程是(Fe、Cr)3C2以析出的TiC为形核核心形核长大,随后相变为更加稳定的(Fe、Cr)7C3,在快速冷却过程中有未转变完的(Fe、Cr)3C2保留下来。熔覆层中的原始TiC、析出的TiC、生成的(Fe、Cr)7C3和(Fe、Cr)3C2作为硬质相提高了熔覆层的硬度。  相似文献   

7.
用同轴送粉的方式在42CrMo表面激光熔覆Fe-WC合金粉末,通过扫描电镜、光学显微镜、能谱仪观察分析熔覆层的显微组织特征、WC陶瓷颗粒对熔覆层组织性能的影响、WC陶瓷颗粒分布特征及WC周围块状共晶物的组成成分;用显微硬度计、摩擦磨损试验仪、高精度电子天平测量基体与熔覆层的性能及质量损失,分析了引起性能曲线变化的原因。结果表明,熔覆层底部到顶部的组织变化为平面晶、晶界明显的胞状晶、交错生长的柱状树枝晶、排列紧密的胞状晶、方向均一的柱状树枝晶;WC陶瓷颗粒具有细化枝晶、阻断枝晶生长,增强熔覆层性能的能力;WC陶瓷颗粒在熔覆层中聚集分布,形成较宽的陶瓷带;WC陶瓷颗粒周围的块状共晶物是由WC部分分解得到的,其组成元素包括C、W、Fe、P、Cr。熔覆层平均硬度达到850 HV0.3,是基体平均硬度的3.4倍。摩擦因数为0.275左右,比基体小0.525。基体的质量损失是熔覆层的11倍多。说明Fe-WC合金熔覆层能够有效提升基体的硬度及其抗磨损能力。  相似文献   

8.
In2O3对Ni60激光熔覆层的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
向Ni60合金粉末中加入适量的In2O3选取合适的工艺参数,采用激光熔覆技术在45钢表面上获得了无裂纹的高质量熔覆层。对熔覆层显微组织进行了观察和分析,测试了熔覆层的显微硬度和摩擦磨损性能。结果表明,同未加入In2O3的Ni60激光熔覆层相比,加入适当比例In2O3的Ni60熔覆层,虽然硬度有所降低,但硬度分布更加均匀,且在该文摩擦条件下耐磨性提高。In2O3能够降低Ni60激光熔覆层裂纹敏感性的原因在于适量的In2O3能够抑制粗大块状硬质相的生长,改善枝晶分布,细化组织晶粒,提高涂层韧性。  相似文献   

9.
用等离子熔覆技术在Q235钢上制备了CoCrFeMnNiCx(x=0, 0.05, 0.1, 0.2,x为摩尔分数)高熵合金熔覆层,并研究了熔覆层的合金成分,显微组织、相结构以及显微硬度。结果表明: C0、C0.05、C0.1和C0.2合金熔覆层的显微组织均为树枝晶结构,其中,C0合金熔覆层只形成了简单的面心立方相,其晶格常数为0.359 7 nm;加入C后,合金熔覆层仍以简单面心立方为主,只是晶格常数有所增加,分别为0.360 2(C0.05)、0.360 3(C0.1)和0.361 8(C0.2) nm;同时有少量Cr7C3生成,且随着C含量的增加,Cr7C3的形态由棒条状变为多边形颗粒状。由于少量的C元素在熔覆层中既可以作为固溶元素起到间隙固溶强化效果,也可与Cr元素形成Cr7C3起到第二相弥散强化作用,所以随含C量的增加,熔覆层显微硬度呈增大的趋势,当C的摩尔比为0.2时,熔覆层硬度达到354.7 HV0.5。  相似文献   

10.
WC增强Fe基合金熔覆层的组织与湿砂磨损特性   总被引:2,自引:1,他引:1  
采用等离子熔覆方法在Q235钢基体上制备了WC增强Fe基合金熔覆层,研究了添加质量分数为10%~30%WC-Co对熔覆层的微观结构和湿砂磨损特性的影响。结果表明:大部分WC-Co在等离子熔覆过程中发生分解,WC-Co添加量为30%时,熔覆层主要由α-Fe固溶体、Fe6W6C、(Cr,Fe)23C6和WC相组成;熔覆层的显微组织形貌自界面结合处至涂层上部逐渐转变,即由平面晶变为树枝晶再转为胞状晶,α-Fe固溶体主要以树枝晶/胞状晶存在,而Fe6W6C、(Cr,Fe)23C6相则主要在枝晶间析出;熔覆层显微硬度均不小于800HV0.2,其湿砂磨损形式主要为磨粒磨损,且熔覆层显微硬度与抗湿砂磨损能力均随WC-Co添加量增加而增大,这主要与强化相(Fe6W6C、(Cr,Fe)23C6、WC)的含量以及固溶强化效果随WC-Co添加量增多而增大有关。  相似文献   

11.
1Cr18Ni9Ti 不锈钢表面电火花熔覆 WC 涂层特性研究   总被引:1,自引:0,他引:1  
目的研究1Cr18Ni9Ti不锈钢经电火花强化后,WC涂层的显微组织和性能。方法采用电火花熔覆技术在不锈钢1Cr18Ni9Ti基体表面制备WC熔覆层,并分析熔覆层的表面形貌、显微组织、显微硬度、耐磨性,采用线性极化法研究熔覆层在3.5%(质量分数)Na Cl腐蚀溶液中的耐腐蚀性能。结果熔覆层组织均匀、连续、致密,与基体呈冶金结合。显微硬度最大值达到1680HV0.3,平均值为1336HV0.3,比不锈钢基材提高了4倍,耐磨性是不锈钢基材的4倍。在3.5%Na Cl腐蚀溶液中,熔覆层的自腐蚀电位较不锈钢减小了约165 m V,击破电位低于不锈钢基材,维钝电流密度高于不锈钢基材。结论熔覆层具有高硬度和高耐磨性能,磨损机理主要是粘着磨损和磨粒磨损,但在3.5%Na Cl腐蚀体系中,耐腐蚀性能低于1Cr18Ni9Ti不锈钢。  相似文献   

12.
崔陈  朱协彬  程敬卿  刘振华  韩顺顺 《表面技术》2023,52(7):167-176, 230
目的 制备高强度和高硬度的耐磨性涂层,用于已磨损的机械零件表面,以延长其使用寿命,避免机器因磨损而带来的各种故障。方法 采用等离子熔覆技术在40CrMnMo表面制备WC-10Co-4Cr/Fe300合金复合熔覆层,研究不同质量分数WC-10Co-4Cr对熔覆层组织和性能的影响。利用金相显微镜、超景深光学显微镜、SEM、EDS、XRD对熔覆层的组织形貌进行表征和物相分析,借助数显显微硬度计和销盘式摩擦磨损试验机测试熔覆层的硬度和耐磨性。结果 WC-10Co-4Cr/Fe300合金作为一种复合材料,与基材形成了冶金结合,结合区域无孔洞和裂纹。熔覆层微观结构随着WC-10Co-4Cr含量的增加,逐渐由柱状晶向树枝晶过渡,它主要由Fe6W6C、(Cr、Fe)23C6和WC相组成。熔覆层的平均硬度大致随着WC-10Co-4Cr含量的增加而提高,当WC-10Co-4Cr的质量分数达到20%时,熔覆层的硬度最高(518.5HV0.2),大约是基体硬度的1.7倍。熔覆层的主要摩擦机理为磨粒磨损,随着WC-10Co-...  相似文献   

13.
利用活性燃烧高速燃气(AC-HAVF)喷涂技术在0Cr13Ni5Mo不锈钢上制备了Ni60/WC复合涂层,研究了其微观组织及耐磨耐蚀性能.结果表明:涂层主要由Fe-Ni固溶体以及Cr0.19Fe0.7Ni0.11,WC,M6C(Ni2W4C或Fe3W3C),Cr26C3,CrB2等相组成;涂层与基体结合很好,涂层的孔隙率约为2.5%;WC,M6C,Cr26G3,CrB2等硬质相弥散分布于涂层中,部分区域硬质相达到了200~800 nm;涂层硬度分布不均匀,平均硬度为685HV;涂层具有优异的耐磨耐蚀性,其磨损体积是0Cr13Ni5Mo不锈钢的1/8.8,平均腐蚀速度是0Cr13Ni5Mo不锈钢的1/2;涂层的磨损机理以疲劳磨损为主,弥散分布的硬质相是涂层硬度以及耐磨性提高的主要因素.  相似文献   

14.
利用活性燃烧高速燃气(AC-HVAF)喷涂技术在0Cr13Ni5Mo不锈钢表面制备了WC-CoCr涂层,并利用XRD、SEM、滑动磨损以及电化学试验分析了涂层的微观组织以及耐磨耐蚀性.结果表明,涂层具有优异的微观结构以及良好的耐磨耐蚀性.XRD分析未发现其他喷涂技术普遍存在的W2C以及W相,AC-HAVF喷涂技术可以有效抑制WC的分解;涂层致密且与基体结合良好,孔隙率仅为0.75%.滑动磨损试验表明,涂层具有很低的磨损率.其主要原因为涂层硬度极高、WC颗粒细小和没有W2C相.电化学试验表明,WC-CoCr涂层的耐蚀性优于基体0Cr13Ni5Mo不锈钢,Cr的加入、W的缺少以及孔隙率低是WC-CoCr涂层耐蚀性优异的重要原因.  相似文献   

15.
扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响   总被引:1,自引:0,他引:1  
在45钢表面激光熔覆镍基WC合金涂层,分析扫描速度对熔覆层的成型、组织和性能的影响。采用金相显微镜、扫描电镜、显微硬度仪和摩擦磨损试验机对熔覆层的显微组织、化学成分、相组成以及耐磨耐蚀性进行分析测试。结果表明,熔覆层组织致密,与基体有良好的冶金结合。扫描速度增大,熔覆层出现裂纹的倾向增大,底部柱状晶外延生长层宽度减小,组织晶粒细化,相组成种类几乎没有变化,显微硬度增大,耐磨耐蚀性提高。当扫描速度为200 mm/min时得到成型性及耐磨耐蚀性优良的熔覆层。  相似文献   

16.
镍基合金激光熔覆-离子渗硫复合改性层组织性能   总被引:1,自引:0,他引:1       下载免费PDF全文
韩彬  张蒙科  崔岗  王勇 《焊接学报》2016,37(10):1-4,96
利用激光熔覆和离子渗硫技术在45钢表面制备复合改性层,采用SEM,EPMA,XRD等手段对比研究激光熔覆层和渗硫层的组织形貌、成分分布及相组成;并测试渗硫前后涂层的耐磨性和耐蚀性.结果表明,镍基合金涂层主要由γ-(Fe,Ni),Fe0.64Ni0.36,M23C6,WC,M7C3和Fe2B等物相组成,显微硬度达到740 HV0.2.渗硫后在激光熔覆层表面形成了以FeS为主的渗硫层,表面疏松多孔,由微纳米级的尖岛状颗粒堆砌而成.与熔覆层相比,复合改性层的摩擦系数和磨损量都显著降低,减摩和耐磨效果明显.渗硫后镍基合金激光熔覆层自腐蚀电位下降,腐蚀电流密度增大,耐蚀性略微降低.  相似文献   

17.
目的证明活性剂SiO2的加入能够改善钴基硼化物层的宏观形貌、硬度、耐磨损性能、微观组织结构及物相组成。方法以Q235钢为母材,Co60和B4C为熔覆材料,SiO2为活性剂,利用活性氩弧熔覆技术制备B4C质量分数为8%的钴基硼化物复合涂层。分析活性剂SiO2的加入对熔覆层截面尺寸的影响,并测定熔覆层的硬度,分析熔覆层的微观结构及相组成。通过磨损试验,对比分析基体、常规熔覆层及活性熔覆层的耐磨损性能。结果添加活性剂后,熔覆层的微观组织结构发生了改变,生成的物相增多。物相分析表明,常规熔覆层含有Co2B,Mn2B,Cr B2等相,活性熔覆层中除此之外,还含有W3Co B3,Cr3B4,Cr3C2,Co2SiO4等新相。活性熔覆层的硬度为常规熔覆层的1.13倍,耐磨粒磨损、粘着磨损、冲蚀磨损性能分别为常规熔覆层的1.57,1.37,1.49倍。结论添加活性剂SiO2后,熔覆层与基体结合更好,微观组织得到细化和均匀化,硬度和耐磨损性能都得到提高。  相似文献   

18.
T10钢表面激光熔覆Ni/WC-La_2O_3性能研究   总被引:3,自引:0,他引:3  
采用激光熔覆技术在T10钢表而激光熔覆Ni基合金,并研究了在Ni基合金中加入WC硬质相、纳米稀土氧化物La_2O_3后的性能和组织结构的变化情况.实验表明:激光熔覆层由熔覆层、结合区和热影响区组成,在合适的工艺条件下可得到结合性能良好的熔覆层.Ni60+30%WC熔覆层的硬度与未加入WC相比改变不大,但耐磨性却得到很大的提高;Ni60+1.0%La_2O_3熔覆层主要由树枝晶组成,在激光熔覆层中添加La_2O_3,起到细化枝晶的作用,同时激光熔覆层平均硬度比未加稀土的提高约150 HV0.1.  相似文献   

19.
含钛铁基耐磨复合材料的研制   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研制一种铁基耐磨复合材料,采用等离子熔覆技术,通过调节铬含量制备多组Fe-Cr-Ti-C合金系统.借助SEM和XRD等分析手段对熔覆层组织和碳化物形貌进行分析.结果表明,熔覆层中随着铬含量的提高,基体组织由A+F向F及M转变;碳化物M7C3及TiC等硬质相的数量逐渐增多.此外研究了铬含量对熔覆层耐磨粒磨损性能的影响规律,熔覆层的耐磨性随着铬含量的增加而提高,当铬含量达到20.1%时,大量高硬度六边形M7C3复合物结合一定量的呈开花状、球状或团聚状TiC颗粒均匀弥散分布在具有较高强韧性的板条马氏体基体中,使得熔覆层具有最佳的耐磨性.  相似文献   

20.
FeCoCrNi HEA coatings with 20% mass fraction of WC reinforcing particles were prepared by two different cladding methods, laser cladding (LC) and plasma cladding (PC). The microstructure of HEA matrix and WC particles of LC and PC coatings were discussed respectively. For HEA matrix, dendritic morphology was observed in both coatings. For WC particles, a few granular (Cr,W)2C carbides around WC particles in LC coatings, and a large number of crystal and fishbone Fe3W3C carbides around WC particles in PC coatings. Mechanical properties as hardness and wear resistance of the two kinds of coatings were also investigated. The interstitial solution strengthening effect of C element is stronger in PC coating, and the hardness of HEA matrix in LC coatings is twice that of in PC coating, which shows a strong retention force on WC particles. The friction coefficient of LC coating is lower and stable, with the volume wear rate of 0.7 × 10−5 mm−3/N·m, showing high wear resistance. PC coatings have poor wear resistance due to decarbonization and oxidation of WC particles and reduction of retention force of HEA matrix, with the volume wear rate of 8.29 × 10−5 mm−3/N·m. The wear mechanism of both coatings were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号