首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
以Ti微合金马氏体钢为研究对象,通过光学显微镜、扫描电镜等手段,研究了加热温度对试验钢奥氏体晶粒大小的影响,同时研究了奥氏体化温度对试验钢组织和力学性能的影响。结果表明,随着加热温度的升高,试验钢的奥氏体晶粒呈增大趋势,晶粒粗化温度为1050 ℃。随着重新奥氏体化温度升高,奥氏体晶粒呈现先细化再粗化的过程,880 ℃下奥氏体晶粒最细,抗拉强度和屈服强度分别达到1657 MPa和1343 MPa,韧性优于传统马氏体钢。  相似文献   

2.
采用正交试验对含碳化物的等温淬火球墨铸铁(CADI)的热处理工艺进行了优化,分析了热处理参数对CADI组织及耐磨性的影响.结果表明:等温淬火温度对CADI的耐磨性影响最大,较高的等温淬火温度会使奥铁体中富碳奥氏体粗化从而影响耐磨性,而较低的淬火温度则会降低韧性容易脆裂.奥氏体化温度、奥氏体化时间和等温淬火时间对CADI材料耐磨性的影响基本相当,较高的奥氏体化温度会粗化富碳奥氏体,对耐磨性不利.优化后的热处理制度为900℃奥氏体化1h,然后在280℃下盐浴保温1.5h,采用该制度处理后的CADI材料性能不低于进口商业化CADI犁铧产品的性能.  相似文献   

3.
通过调整热处理工艺参数,探讨对高碳低合金贝氏体钢的组织形态、力学性能及耐磨性的影响。分析认为,奥氏体化温度、等温温度及时间对试验钢的性能均有不同程度的影响,可以根据工件使用工况要求,适当调整热处理工艺参数,获得所需组织及性能。  相似文献   

4.
通过在Gleeble-1500热模拟试验机上的模拟加热和冷却实验,研究了在不同温度进行奥氏体化后,同一等温温度下得到的珠光体轨钢的显微组织和力学性能。结果表明:随着奥氏体化温度升高,实验钢的原始奥氏体晶粒尺寸增大,相变后珠光体组织中珠光体域的尺寸也随之增大,而珠光体片层间距随奥氏体化温度的升高而变小。力学性能测定结果表明,实验钢的硬度随奥氏体化温度的升高,呈上升趋势,冲击韧度呈下降趋势。从珠光体转变机理方面对上述关系进行了分析,阐明了奥氏体化温度对控制珠光体钢轨组织和性能的影响。  相似文献   

5.
将38CrMoAl钢加热至1000~1200 ℃ 的奥氏体化温度,保温时间为0~300 s,研究了奥氏体化温度和保温时间对奥氏体晶粒长大行为的影响。试验结果表明,试验钢奥氏体平均晶粒尺寸随奥氏体化温度升高而增大,且晶粒长大速率随着温度的升高而增大。在同一奥氏体化温度下,奥氏体平均晶粒尺寸随保温时间的增加逐渐增大,且晶粒长大速率随时间的延长逐渐减小。根据试验钢奥氏体晶粒尺寸试验数据,建立了38CrMoAl钢奥氏体晶粒尺寸与奥氏体化温度和保温时间关系的Sellars模型,并验证了模型的准确性。  相似文献   

6.
采用扫描电镜、X射线衍射仪、显微硬度仪及拉伸试验等研究了不同奥氏体化温度对轧态C61钢的显微组织和力学性能的影响.结果表明:奥氏体化温度为950℃的热处理工艺能使轧态C61钢获得良好力学性能,其抗拉强度、屈服强度、伸长率以及断面收缩率分别为1376 MPa、997 MPa、13.8%、62.5%.随奥氏体化温度升高,试验钢的断裂机制从韧性断裂转变为韧性+准解理断裂,奥氏体化温度为950℃时,断口组织均匀且韧性最好.当奥氏体化温度较低时,显微组织中马氏体板条较细小,随着温度的升高,马氏体板条束宽度增大,导致轧态C61钢强度、硬度降低.奥氏体化温度对钢中残留奥氏体含量有所影响,在1000℃时残留奥氏体最多、硬度最低.  相似文献   

7.
研究了奥氏体化温度对试验钢三体冲击磨损性能的影响,结果表明,试验钢的磨损量随奥氏体化温度的升高呈曲线变化,低能下,奥氏体化温度为1050℃时磨损量最小;高能下,奥氏体化温度为1000℃℃时磨损量最小;高能冲击磨损条件下磨损量均小低能条件下的磨损量。  相似文献   

8.
对含碳量0.35wt%的无碳化物高强贝氏体钢进行等温贝氏体相变试验,并通过膨胀法、显微组织观察、XRD和拉伸试验等方法研究奥氏体化温度(860~1260℃)对该贝氏体钢相变和组织性能的影响。结果表明,860℃奥氏体化时,贝氏体转变量略高于其它温度,残余奥氏体含量较高,继续升高奥氏体化温度,贝氏体转变量和残奥含量变化不大。此外,随着奥氏体化温度的升高,贝氏体相变动力学加快,这是原始奥氏体晶粒尺寸增加,贝氏体生长空间增大引起的。当奥氏体化温度较低时,虽然贝氏体相变速率较慢,但由于原始奥氏体晶粒细化,残奥含量较多等原因,钢的抗拉强度和伸长率均较高。因此,从提高钢性能角度出发,应降低无碳化物高强贝氏体钢热处理时的奥氏体化温度。  相似文献   

9.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

10.
采用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)等研究了不同温度奥氏体化对M54二次硬化钢微观组织及力学性能的影响。结果表明:当奥氏体化温度较低时,试验钢有较多的未溶(Mo, W)6C碳化物和预处理后的粗大晶粒,使其强度降低,冲击性能恶化。提高奥氏体化温度可减少未溶(Mo, W)6C碳化物的数量,同时奥氏体再结晶使晶粒细化,试验钢的强度和冲击性能快速上升,当奥氏体化温度为1060℃时,试验钢具有优异的强韧性配合,而进一步提高奥氏体化温度到1100℃将导致晶粒迅速粗化进而降低冲击性能。利用EBSD研究了不同温度奥氏体化后试验钢的马氏体亚结构,发现马氏体板条束、板条块具有与奥氏体晶粒相似的变化规律。  相似文献   

11.
采用销盘式高温摩擦磨损试验机,对不同显微组织的4Cr5MoSiV1钢在25℃和400℃下进行了干磨损试验,研究了显微组织对其耐磨性的影响,并探讨了磨损机制。研究结果表明,4Cr5MoSiV1钢在室温下主要为粘着磨损,其耐磨性不仅取决于材料的硬度,还与其断裂抗力有关;400℃时的磨损为氧化磨损,但已超越了Quinn型氧化轻微磨损,其耐磨性取决于材料的硬度、韧性以及热稳定性。室温耐磨组织应具有高的硬度和一定的断裂抗力,而高温耐磨组织应具有高的硬度和热稳定性及一定的韧性。  相似文献   

12.
利用激光共聚焦显微镜和扫描电镜对一种珠光体型高铁车轮钢的组织和磨损形貌等进行了观察,研究了不同等温温度对其组织及耐磨性的影响。试验结果表明:在珠光体转变温度内对试验钢进行热处理得到了珠光体组织,随着等温温度的升高,珠光体片层间距增加,珠光体团尺寸减小,试验钢的显微硬度减小,珠光体钢的磨损量则增加。使用SiC粒度大的砂纸研磨后,珠光体钢的磨损量也增加了。珠光体钢的磨损表面呈现深浅程度不一的犁沟,磨损表面还存在一系列的剥离坑和细小的微裂纹,犁沟深度随着等温温度升高而逐渐增加。充分证明了珠光体片层间距越小的试验钢,其耐磨性能也越优异。  相似文献   

13.
研究了碳含量分别为0.31%、0.38%和0.50%的低合金耐磨铸钢热处理后的组织、强韧性及不同磨损条件下的磨损性能。结果表明,试验钢经950℃淬火及250℃回火,显微组织均以板条马氏体为主,随含碳量的增加,组织有所粗化,并且有片状马氏体出现。试验钢的硬度随碳含量的增加而增加,但韧性下降。磨损试验结果表明,冲击磨料磨损条件下,主要表现为凿削磨损,碳含量为0.38%的试验钢具有较好的耐磨性;静磨料磨损条件下,主要表现为切削磨损,耐磨性主要受硬度的影响,碳含量为0.50%试验钢具有较好的耐磨性。  相似文献   

14.
激光再制造金属零件熔覆层组织及耐磨性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Fe-Cr-B-Si-Mo铁基合金粉末进行激光多层熔覆,利用金相显微镜(OM),扫描电镜(SEM),显微硬度计和磨损试验机分析了熔覆层的显微组织,测试了涂层的硬度和耐磨性能.试验发现,多层熔覆层组织致密,具有快速凝固组织特征;层间形成了冶金结合,从而使整个材料在理论上没有薄弱环节.结果表明,熔覆层硬度达到760~780HV;45钢基体的体积磨损量是激光熔覆层的21.7倍;激光熔覆层具具有较好的冶金质量和耐磨性.  相似文献   

15.
马氏体不锈钢具有高强度、良好的耐磨损性能以及一定的耐腐蚀性能。研制了一种马氏体不锈钢耐磨焊条,在低碳钢Q235上进行堆焊试验,分析堆焊接头的组织转变,并研究堆焊合金的耐磨性能。结果表明,该焊条具有良好的焊接工艺性能,堆焊层金属与母材结合良好,未出现裂纹等缺陷;堆焊层组织为板条马氏体+碳氮化物+少量残余奥氏体;碳氮化物沿马氏体基体和晶界析出,呈弥散分布,起到细晶强化和析出强化的作用;与母材相比,堆焊层金属的硬度和耐磨损性能明显提高,其磨损机制主要为显微切削和塑性变形。  相似文献   

16.
基于多次回归分析的高钒高速钢滚动磨损模型   总被引:1,自引:1,他引:0  
利用自制的滚动磨损试验机,测试了4种高钒高速钢的磨损性能,利用回归方法建立了磨损量关于循环次数和基体中碳含量的二元方程模型.结果表明:该模型可较准确地预测高速钢的磨损性能;预测结果揭示,基体中碳含量为0.48%~0.50%时,基体组织主要为低碳板条马氏体,硬度高且韧性较好,可以同时有效的抵御显微切削及疲劳磨损,磨损性能最佳.当基体中碳含量过低时,基体中出现大量硬度很低的铁素体相,显微切削为高速钢的主要磨损机制,而碳含量过高时,基体主要为韧性差的高碳马氏体,高速钢以疲劳磨损为主,二者均导致耐磨性下降.  相似文献   

17.
研究了3种低合金高强度耐磨钢(NM400、NM500和高碳钢65Mn)淬火后组织、性能和析出物情况,以及在不同角度和压力下的冲蚀磨损性能和磨损机理。结果表明:3种耐磨钢的组织均为马氏体,其中NM400和NM500为板条马氏体组织,而高碳钢65Mn则主要为片状马氏体组织。冲蚀磨损试验表明:在较小的冲蚀角度下,3种耐磨钢的冲蚀磨损性能主要与材料的硬度有关,但是在较大的冲蚀角度下,3种耐磨钢的冲蚀磨损性能除了与硬度有一定关系外,还与材料的塑韧性有较大关系。  相似文献   

18.
利用贝氏体等温淬火工艺在Dievar钢中制备不同体积比例的贝/马复相微观组织,通过对显微组织、宏观/微观硬度、磨面形貌、磨屑和磨损率的分析进一步研究了贝/马复相Dievar热作模具钢的高温摩擦磨损性能并探讨其磨损机制。结果表明,Dievar钢中下贝氏体含量随等温淬火保温时间的延长而增加,其中保温3、5、10 min时下贝氏体体积占比分别为32%、45%、63%。贝/马复相试样相比于传统油淬试样具有更高的回火抗性,不同等温试样硬度值均高于传统油淬试样硬度值。同等磨损条件下,等温淬火Dievar钢相较于常规热处理Dievar钢耐磨性更加优异。在400~600℃高温摩擦磨损试验条件下,Dievar钢表面氧化物为Fe2O3和Fe3O4。Dievar钢400~500℃高温磨损机制为磨粒-轻微氧化磨损;随着温度升高,氧化物颗粒尺寸变大,磨粒磨损加剧。当温度升至600℃时,常规油淬试样磨损机制为磨粒-氧化磨损,以磨粒磨损为主;而等温淬火试样磨损机制则以氧化磨损为主。  相似文献   

19.
吴强  李密文  袁伟 《模具工业》2009,35(9):66-70
研究了添加5种不同含量铈(Ce)的45Cr2NiMoVSi热作模具钢的组织及耐磨性,通过分析组织、磨痕形貌以及平均磨损率的变化情况,与不添加Ce的45Cr2NiMoVSi钢进行对比。结果表明:Ce添加量在适当的范围内45Cr2NiMoVSi钢组织得到显著细化,平均磨损率有明显下降,磨痕形貌也比较细而浅,耐磨性得到有效提高。当Ce添加量为0.22%(质量分数)时,45Cr2NiMoVSi钢的表面平均磨损量最小,耐磨性最好,其平均磨损率是不添加Ce的45Cr2NiMoVSi钢的34.21%。  相似文献   

20.
麻衡 《轧钢》2021,38(5):42-47
由于煤矿刮板运输机服役的恶劣环境,对传统NM360耐磨钢的耐蚀及耐磨性能提出了更高的要求。综合考虑合金元素对钢材耐蚀性的提升作用,在传统耐磨钢成分的基础上,采取添加一定量的Cu、Ni合金元素的方法,开发了耐腐蚀NM360钢板。采用场发射扫描电镜,透射电子显微镜以及布氏硬度仪对耐腐蚀NM360钢板的组织及硬度进行分析研究;通过干砂/橡胶轮磨损试验机测试了耐腐蚀NM360钢板的磨损性能;利用腐蚀挂片试验测试了耐腐蚀NM360钢板的腐蚀性能。结果表明,虽然添加Cu、Ni元素后耐腐蚀NM360钢板与传统耐磨钢板硬度相当,但耐腐蚀性能及耐磨性能均有一定程度的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号