共查询到14条相似文献,搜索用时 109 毫秒
1.
利用光学显微镜、扫描电镜、能谱分析、差热分析、硬度测试和拉伸测试等方法研究了均匀化处理对Al-4.5Cu-0.8Mg合金的组织和性能的影响。结果表明:Al-4.5Cu-0.8Mg铸态组织中存在较严重的枝晶偏析现象,晶界及晶界交汇处有大量Al2Cu相及Al2Cu和Al2CuMg的共晶相,合金经480℃×12 h均匀化处理后,组织中的非平衡相已基本溶解,综合力学性能较好,抗拉强度为320 MPa,屈服强度为246 MPa,伸长率为10.2%,硬度为139.2 HV。 相似文献
2.
采用拉伸力学性能测试、电导率测量、金相和透射电镜技术研究不同冷变形下时效处理对Cu-1.0Cr-0.1 Zr合金性能的影响.结果表明:Cu-1.0Cr-0.1Zr合金在950℃×1h固溶处理+70%冷变形+450℃×4h时效后的综合性能最好,其抗拉强度、屈服强度、伸长率和电导率分别达到543.3 MPa、522.3 MPa、12.68%和82.6%IACS.从合金的显微组织观察分析中可知,在此工艺下合金基体中析出了大量弥散细小的强化相,第二相析出是合金强化的重要原因. 相似文献
3.
4.
采用铸造、冷轧和T6热处理制备了SiO2气凝胶(SA)增强铝基复合材料。研究了SA含量对Al-4Cu-0.1Sn合金显微组织(铸态与冷轧T6态)与力学性能的影响。结果表明,SA能有效地加入到Al-4Cu-0.1Sn合金中,并以球状形式均匀的分布在晶粒内部。铸态下,随着SA含量的增加,合金的显微硬度呈上升趋势。当SA含量为0.02%时,合金平均硬度(HV)达到最高85,相对于未添加SA的合金提升了49%,但铸态下添加SA的合金拉伸性能略微下降;冷轧T6态下,当SA含量为0.02%时,合金硬度(HV)为138。随着SA增加,合金的屈服强度与抗拉强度先升高后降低,当SA含量为0.04%时,合金屈服强度达到320 MPa,抗拉强度达到401MPa,相比于未添加SA的合金提升了10.3%和10.7%。添加SA能够提高铸态Al-4Cu-0.1Sn合金硬度的机理是其细化了铸态合金的晶粒,并使晶界处第二相由粗大的骨骼状变成细小的非连续状。添加SA提高冷轧T6态强度的机理是细化了Al2Cu相并消除了Al7Cu2Fe相。 相似文献
5.
采用扫描电子显微镜、透射电镜、电子探针以及X射线衍射物相分析等技术手段,对稳定化热处理前后Zn-10Al-2Cu-0.02Ti合金的显微组织进行观察,通过室温恒载荷拉伸、慢应变速率拉伸实验研究合金组织变化及其对合金室温蠕变行为的影响.结果表明:经过稳定化热处理((350℃,30 min,水冷)+(100℃,12h, 空冷)),后合金中的α+η层片状组织的减少,胞状和粒状组织增多;与挤压态合金相比,经过稳定化热处理后的Zn-10Al-2Cu-0.02Ti合金的抗蠕变性能显著提高,其稳态蠕变速率降低了96.9%. 相似文献
6.
对Al-4.5Cu-3.5Zn-0.5Mg铸态合金进行不同双级均匀化处理,采用扫描电镜、电子探针显微分析仪、差示扫描量热仪和光学显微镜等,研究了该合金的铸态组织及其在均匀化过程中的组织演变。结果表明:铸态组织主要由α-Al、粗大Al2Cu相以及少量AlZnMgCu、Al7Cu2Fe相组成,合金元素枝晶偏析严重。经470 ℃×12 h均匀化处理后,AlZnMgCu相已基本回溶至基体;第二级均匀化温度由490 ℃逐渐升高到520 ℃或者延长保温时间,Al2Cu相逐渐回溶至基体,合金元素分布趋于均匀。合金过烧温度为520 ℃,最佳双级均匀化制度为470 ℃×12 h+510 ℃×32 h,该制度与均匀化动力学计算结果基本一致。 相似文献
7.
采用OM、SEM及硬度测试等手段研究了均匀化退火处理对Al-4.8Zn-1.6Mg合金微观组织与性能的影响。结果表明:合金铸态组织主要由-Al和晶界处非平衡低熔点第二相组成。随着退火温度升高或保温时间延长,晶界上熔点较低的非平衡第二相逐渐回溶到-Al中,偏析现象基本消除,合金元素分布趋于均匀。在退火时间保持不变时,随着退火温度升高,合金硬度逐渐上升。当退火温度不低于315 ℃时,随退火时间的延长,合金硬度呈下降趋势。当退火温度超过355 ℃时,随着退火时间的延长,合金硬度逐渐上升。该合金适宜的均匀化退火处理工艺为465 ℃/24 h。 相似文献
8.
利用力学、电学性能测试,金相显微分析、扫描和透射电镜观察等手段研究均匀化退火和形变热处理工艺对Cu-15Ni-8Sn-1.0Zn-0.8Al-0.2Si合金组织结构与性能的影响。合金铸锭经830℃,2 h+850℃,2 h双级均匀化退火处理,热轧变形后合金板材经850℃,1 h固溶处理,冷轧变形60%后,分别在400和450℃时效处理。当450℃时效时间为30 min时,合金硬度为3780 MPa,电导率8.0%IACS,抗拉强度1144 MPa,屈服强度1098 MPa,延伸率3.29%;在400℃时效1 h时,合金硬度为3900 MPa,电导率7.4%IACS,抗拉强度1164 MPa,屈服强度1112 MPa,延伸率3.05%。合金的强化效应主要来源于调幅分解强化、析出强化和亚结构强化的共同作用,同时,溶质原子的析出使基体固溶度降低,合金电导率提高。合金经双级均匀化退火处理后为均匀的等轴晶组织,在400℃,1 h时效过程中发生调幅分解,同时析出具有L1_2结构的β-Ni_3Sn析出相,其与Cu基体的晶体取向关系为:(002)_(Cu)‖(00 1)_β,[110]_(Cu)‖[110]_β;(220)_(Cu)‖(110)_b,[112]_(Cu)‖[112]_β。 相似文献
9.
10.
采用力学性能测试、光学显微镜、扫描电镜、X射线衍射分析、切削性能测试等技术手段,研究了热处理对易切削变形Zn-1.1Cu-0.5Bi合金组织与性能的影响。结果表明:使Zn-1.1Cu-0.5Bi合金强度、硬度提高的较佳热处理工艺为350℃,保温30 min。350℃×30 min热处理态合金组织变得更均匀,但伴随有晶粒的明显长大;热处理态合金比挤压态屈服强度稍有下降,抗拉强度提高11.7%,伸长率有所下降。Zn-1.1Cu-0.5Bi合金铸态切削性能最好,挤压态和热处理态切削性能稍有下降,热处理对合金切削性能改善不明显。 相似文献
11.
采用熔铸、轧制的方法制备Zn-1.0Cu-0.2Ti合金,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)观察合金的显微组织,测定不同退火制度后合金的硬度和再结晶晶粒尺寸,建立了Zn-1.0Cu-0.2Ti合金的再结晶晶粒长大模型,研究退火温度和退火时间对Zn-1.0Cu-0.2Ti合金再结晶行为的影响。利用硬度法测得Zn-1.0Cu-0.2Ti合金的再结晶温度在230℃左右。结果表明:随着退火温度的升高和退火时间的延长,合金再结晶晶粒均逐渐长大,但晶粒长大的速度趋于缓慢,合金中弥散分布于基体内的CuZn4和TiZn15相能够抑制再结晶晶粒的长大。 相似文献
12.
研究时效温度和时间对Cu-1.0Ni-0.25Si-0.1Zn合金组织和性能的影响,以及冷变形对该合金时效后性能的影响。合金经850℃固溶、450℃时效处理后,第二相呈弥散分布,并可获得较高的显微硬度及导电率。通过该合金在450℃时效过程中的导电率变化和根据导电率与新相的转变量之间的关系计算出了时效过程中新相的转变比率。从而确定了该温度下时效的Avrami相变动力学方程及导电率方程。 相似文献
13.
采用拉伸性能和导电率测试、光学显微镜(OM)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)研究了固溶温度和时间对Al-8.8Zn-2.0Mg-2.1Cu-0.1Zr-0.1Ce合金板材微观组织、拉伸性能及断口形貌的影响。结果表明,试验合金适宜的固溶工艺为470 ℃×60 min,使冷轧态金属间化合物充分固溶。在此工艺下合金时效后的抗拉强度、屈服强度(以Rp0.2计)以及伸长率分别为646 MPa、581 MPa和14.5%。TEM观察发现合金板材固溶时效后晶内强化相η′仅为2~5 nm,并且晶界析出相η呈现断续分布。此外,合金拉伸断面韧窝中大量弥散分布的AlCuCeZn粒子有利于合金塑性的明显提升。 相似文献
14.
Effect of heat treatment processing on microstructure and tensile properties of Ti-6Al-4V-10Nb alloy
Hong SUN Li-ming YU Yong-chang LIU Li-ye ZHANG Chen-xi LIU Hui-jun LI Jie-feng WU 《中国有色金属学会会刊》2019,29(1):59-66
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing. 相似文献