首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对降低无线传感网能耗和保证数据精度之间的矛盾,提出了自适应采样数据并利用压缩感知进行压缩的方法.传统的基于压缩感知的无线传感器数据压缩,只采样部分节点的数据,对于未被采样节点感知到的突发事件很有可能发生漏检情况.本文方法检测所有节点上传的数据再进行压缩,可以有效避免漏检情况的发生.根据信号具有时间相关性的特点,本文采用基于方差分析ANOVA(Analysis of Variance)原理改进的传感器自适应采样频率方法,并考虑节点剩余能量,减少平稳信号的采集次数,均衡网络节点能耗.在LEACH协议基础上,对簇内数据进行压缩感知的方法对数据进行压缩从而减少数据的空间相关性并传输到汇聚节点,以减少网络整体的能量消耗.针对可能的漏报情况,提出一种改进的局部事件监测算法-滑动窗口局部事件监测SW-LED(Sliding Window-Local Event Detection)算法,实现了实时准确的异常检测和预警.实验结果表明本文方法既可以有效的均衡网络节点能耗以提高网络生存周期,同时保证了数据的精度,对于异常情况的识别率也有很大的提高.  相似文献   

2.
为大幅度减少采集路面不平度信号的存储空间,提高采集速度,基于压缩感知理论针对标准路面的不平度信号进行压缩采样和重构。首先验证了B级路面不定度信号在频域下的近似稀疏性,并进行了信号的压缩采样。针对现阶段凸优化方法和常用的三种贪婪算法的不足,提出一种改进的模拟退火算法与子空间追踪算法相结合的稀疏度自适应匹配追踪算法,利用改进的模拟退火算法快速搜索匹配最优的稀疏度,并采用子空间追踪算法快速重构信号。仿真实验对比五种重构方法,结果表明,凸优化方法精度较高,耗时过长;OMP算法和SP算法耗时极短,但需要预先进行实验来估测信号的稀疏度,实用性低;SAMP算法能实现稀疏度的自适应匹配,但匹配的误差较大,且耗时较长;提的新方法具有良好的精度和较快的执行速度,R-squares和耗时的均值分别为0.9837和2.77 s,稀疏度估测效果较好,且采样点数的增加不影响算法重构信号的速度。  相似文献   

3.
传统声纳成像系统所要采集的数据量巨大,给硬件设备以及数据的存储和传输带来很大的压力。压缩感知作为一种全新的采样理论,可以从很少的采样数据中以很大的概率重建原始信号。将压缩感知用于声纳成像,减少数据采集传输量。考虑到水下环境的复杂性,提出了A* OMP作为声纳成像算法,该算法使用A*搜索方法寻找最优原子,得到全局最优路径。实验结果表明,相比于传统OMP算法,所提算法有效地提高了声纳成像的质量。  相似文献   

4.
无线传感器网络中存在大量的数据冗余,数据融合技术通过对采样数据进行压缩,消除冗余,有效的减少了节点发送的数据量,延长传感器网络的寿命.提出了压缩感知与数据转发相结合的数据融合算法,在网络采样数据收集的过程中根据节点的子节点个数选择利用压缩感知对数据进行压缩还是直接对数据进行数据转发.仿真结果表明,和基于压缩感知的数据融合算法相比,数据转发与压缩感知相结合的数据融合算法,有效地在平衡节点间负载的同时减少节点的发送量.  相似文献   

5.
白雪松 《计算机仿真》2020,37(1):333-337
采用当前方法采集远程网络中存在的数据时,数据在远程网络中的信噪比较低,采集数据的时间开销较高,存在数据重构精度低和数据采集效率低的问题。将WinPcap运行机制应用到数据堆叠式采集过程中,提出基于WinPcap的远程网络微型数据堆叠式采集方法,对本地网络监控端中存在的数据进行预处理,在压缩感知的基础上通过WinPcap运行机制对本地数据进行随机采样,并对随机采集到的数据进行压缩处理,将压缩处理后的数据传送到远程网络的处理端中,根据节间点存在的社会关系估计没有传送到处理端的数据,通过压缩感知算法重构数据,实现远程网络微型数据的堆叠式采集。仿真结果表明,所提方法的数据重构精度高、数据采集效率高。  相似文献   

6.
提出了基于压缩感知的认知无线电频谱检测方法,该方法采用并联分片压缩采样法,同时引入了基于位置集回验的重构算法.分析了不同重构算法的性能差异,阐述了并联分片压缩采样的实现方法.通过仿真分析了不同分片数条件下,并联分支数对CoSaMP和OMP重构算法重构概率的影响,并说明了频带划分的估计方法.  相似文献   

7.
基于OpenMP的压缩感知并行处理算法   总被引:1,自引:0,他引:1  
针对压缩感知重建算法复杂度高、运行时间长等缺点,提出一种应用于多核处理器的压缩感知并行算法。在认真分析压缩感知算法的基础上,利用OpenMP对压缩感知的编码测量和正交匹配追踪(OMP)算法进行并行处理,提升程序的性能。实验结果表明,随着线程数的增加,程序的执行效率显著提高,加速比呈线性增长; 并且重构过程越复杂,其性能优化越明显。  相似文献   

8.
传统的频谱感知方式因其自身的局限性而难以满足处理速率的更高要求。压缩感知的优势在于前端传感器采样数据量远远小于传统采样方法所获的数据量,从而有效提高频谱感知的速度。本文给出了一种新颖的压缩感知算法——快速傅里叶采样算法,该算法能采集较少的点数,较快地重构信号。算法分为频率分离、比特测试和系数估计三个主要步骤。文中对FFS算法进行了详细分析及实现,给出了仿真信`号重构结果 ,并将该算法的运算量与快速傅里叶变换进行了对比分析。仿真结果表明,该算法具有较好的重构精度,并且信号长度的剧烈增加对运算量的影响较小,在大信号处理时运行时间远远低于FFT。  相似文献   

9.
姚远  梁志毅 《计算机科学》2012,39(10):50-53
传统的奈奎斯特采样定理规定采样频率最少是原信号频率的两倍,才能保证不失真的重构原始信号,而压缩感知理论指出只要信号具有稀疏性或可压缩性,就可以通过采集少量信号来精确重建原始信号.在研究和总结已有匹配算法的基础上,提出了一种新的自适应空间正交匹配追踪算法(Adaptive Space Orthogonal Matching Pursuit,ASOMP)用于稀疏信号的重建.该算法在选择原子匹配时采用逆向思路,引入正则化自适应和空间匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,最终实现了原始信号的精确重建.最后与传统MP和OMP算法进行了仿真对比,结果表明该算法的重建质量和算法速度均优于传统MP和OMP算法.  相似文献   

10.
为了解决传统的压缩感知算法在无线传感器网络中实现的难题,首先研究了用定时器控制ADC进行随机压缩采样的压缩感知技术,实验表明,该方法有效可行。在此基础上提出了基于无线传感器网络的分布式压缩感知算法。该算法通过对随机压缩采样序列的拆分实现分布式压缩采样,最后利用合并后的采样值和CoSaMP算法完成对信号的重构。仿真和实验表明,该方法能够在星型网络拓扑中实现以1/10的标准采样频率下实现信号的重构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号