首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
通过吸附、动电位、接触角和摇瓶浸出试验研究Leptospirillum ferriphilum菌作用前后黄铜矿表面性质的变化。采用不同能源物质(亚铁和黄铜矿粉)培养L.ferriphilum菌。结果表明,细菌可以很快吸附在黄铜矿表面,并且固体能源物质培养的细菌比液体能源物质培养的细菌可以更多、更快地吸附在矿物表面。与细菌作用后,黄铜矿的等电点朝着细菌等电点的方向移动。在添加与不添加能源物质时,黄铜矿的接触角表现出不同的变化趋势。XRD、SEM/EDS检测表明浸出过程中在黄铜矿表面生成了硫和黄钾铁矾。通过EDS检测可知在黄铜矿的分解过程中,铁优先从黄铜矿表面释放出来。在浸出过程中黄铜矿表面生成了钝化层,从而导致其浸出率很低。通过研究推测钝化层的主要成分是硫,而不是黄钾铁矾。  相似文献   

2.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

3.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A. caldus,S. thermosulfidooxidans与L. ferriphilum浸出过程中,一硫化物(CuS)、二硫化物(S22?)、元素硫(S0)、多硫化物(Sn2?)与硫酸盐(SO42?)是黄铜矿表面的主要产物。在A. caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S. thermosulfidooxidans与L. ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

4.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A.caldus,S.thermosulfidooxidans与L.ferriphilum浸出过程中,一硫化物(Cu S)、二硫化物(S2-2)、元素硫(S0)、多硫化物(S2-n)与硫酸盐(SO2-4)是黄铜矿表面的主要产物。在A.caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S.thermosulfidooxidans与L.ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

5.
利用X-射线光电子能谱(XPS)和循环伏安(CV)法研究黄铜矿的钝化膜组成。浸出试验结果表明:无菌浸出和微生物浸出黄铜矿30 d后,Cu的浸出率分别为4.0%和21.5%,Fe的浸出率分别为3.8%和10.5%。XPS分析结果表明:黄铜矿经无菌浸出和微生物浸出后,黄铜矿晶格的中Fe原子优先溶解到溶液中,并且在其表面形成S22-、Sn2-和S0。此外,黄铜矿经微生物浸出后,其表面还检测到SO42-,并且认为SO42-是以黄钾铁矾的形式存在。CV研究结果表明:Cu1-xFe1-yS2-z(yx)和S0导致黄铜矿电极表面钝化。元素硫和黄钾铁矾包裹在黄铜矿表面对其浸出有一定的影响,然而二硫化物、多硫化物或者缺金属硫化物对阻碍黄铜矿浸出起更关键的作用。  相似文献   

6.
研究硫铜钴矿生物浸出过程中细菌的作用及其溶解反应途径。结果表明,间接作用机制和接触作用机制均对硫铜钴矿生物浸出过程产生影响。当细菌吸附到矿物表面时,矿物溶解速率显著加快,说明浸出过程中接触作用机制对硫铜钴矿的溶解有重要影响。浸出过程中硫元素氧化价态的变化顺序为S?2→S0→S+4→S+6,并有单质硫沉淀在矿物表面,说明硫铜钴矿生物浸出过程按照多硫化物途径进行。硫铜钴矿表面被细菌严重腐蚀,出现许多大小不一的腐蚀坑洞,并有单质硫、硫酸盐及亚硫酸盐生成。这些氧化产物在矿物表面形成一层钝化层。  相似文献   

7.
研究硫铜钴矿生物浸出过程中细菌的作用及其溶解反应途径。结果表明,间接作用机制和接触作用机制均对硫铜钴矿生物浸出过程产生影响。当细菌吸附到矿物表面时,矿物溶解速率显著加快,说明浸出过程中接触作用机制对硫铜钴矿的溶解有重要影响。浸出过程中硫元素氧化价态的变化顺序为S-2→S0→S+4→S+6,并有单质硫沉淀在矿物表面,说明硫铜钴矿生物浸出过程按照多硫化物途径进行。硫铜钴矿表面被细菌严重腐蚀,出现许多大小不一的腐蚀坑洞,并有单质硫、硫酸盐及亚硫酸盐生成。这些氧化产物在矿物表面形成一层钝化层。  相似文献   

8.
研究活性炭对四株典型嗜热古菌混合培养物(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis和Sulfolobus metallicus)在65°C时浸出纯黄铜矿过程中活性炭的催化作用和钝化现象的相关性。浸出实验表明,活性炭能够有效地促进黄铜矿的生物浸出和化学浸出。基于同步辐射技术的X射线衍射、铁的L-边和硫的K-边X射线吸收近边结构光谱学分析表明,在生物浸出过程中当氧化还原电位较低((27)400 mV)时,活性炭能通过原电池反应改变电子传递途径,生成更易溶解的次生矿物辉铜矿,从而增强黄铜矿的浸出。在添加活性炭的生物浸出过程的前期,黄钾铁矾迅速累积但铜离子的浸出速率未受到抑制,然而在生物浸出的后期,大量黄钾铁矾沉淀在矿物表面,从而抑制黄铜矿的进一步溶解。在添加活性炭时检测到了更多的单质硫,但由于嗜热古菌混合培养物具有很强的硫氧化活性,所以生成的单质硫被其消解,因此,未检测到其对黄铜矿浸出有显著影响。  相似文献   

9.
在细菌浸出黄铜矿的过程中,黄铜矿表面钝化是普遍现象,成为生物浸铜技术的瓶颈问题。对比研究了普通浸出与强化浸出(加入玻璃圆珠)对铜浸出的影响。结果表明,玻璃圆珠的加入改善了浸出条件,削弱了黄铜矿的钝化效应,使黄铜矿的Cu浸出率从50%提升至 89.8%。扫描电镜(SEM)和X射线衍射(XRD)分析发现,添加玻璃圆珠的黄铜矿表面没有黄钾铁矾沉淀,钝化作用不明显;而不加玻璃圆珠的黄铜矿表面附着厚厚的结构致密的黄钾铁矾,钝化严重,从而阻碍了黄铜矿的溶解和浸出。  相似文献   

10.
通过加压氧化和电化学氧化方法研究了黄铜矿在硫酸溶液中氧化浸出的反应机制。采用金相显微镜、扫描电镜、X射线衍射仪和拉曼光谱对黄铜矿表面氧化产物的形貌和化学组成进行了分析。加压氧化试验结果表明:在pH=3的硫酸溶液中,黄铜矿表面发生钝化,钝化层由Fe_2O_3、FeOOH及贫铁硫化物(CuFe_(1-x)S_2或CuS_2)组成。当浸出液p H=0~1时,铁的氧化物溶解,铜蓝(CuS)和单质硫(S~0)成为新的钝化层。电化学氧化试验结果表明:黄铜矿在酸性介质中的氧化可以分为3个阶段:当阳极极化电位低于0. 75 V(vs. SCE)时,黄铜矿表面生成了贫铁硫化物,对其进一步氧化起钝化作用;当电位在0. 8~1. 0 V范围时,贫铁硫化物被氧化成铜蓝和单质硫,组成新的钝化层;当电位高于1. 05 V时,硫元素被氧化成+4或+6价的氧化态进入酸性介质中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号