首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Object

In humans, even a single night of partial sleep deprivation (PSD) can have a negative impact on cognition and affective processing, suggesting that sleep pressure represents a basic physiological constraint of brain function. Among the spontaneously fluctuating resting state networks, the default mode network (DMN) and its anticorrelated network (ACN) hold key functions in segregating internally and externally directed awareness. Task fMRI after sleep deprivation has revealed altered activation patterns in both networks. We hypothesized that effects of PSD in these intrinsically coupled networks can be detected by resting state fMRI.

Methods

We obtained 6-minute echoplanar imaging time series (1.5 Tesla) during eyes-closed, wakeful-resting experiments from 16 healthy volunteers after normal sleep and after PSD. We used independent component and cross-correlation analysis to study functional connectivity (fc), focusing on the DMN and ACN.

Results

After PSD, focal reductions of auto-correlation strength were detected in the posterior and anterior midline node of the DMN and in the lateral parietal and insular nodes of the ACN. Cross-correlation analysis confirmed reduced cortico-cortical connectivity within and between the DMN and ACN.

Conclusions

Increased sleep pressure is reflected in reduced fc of main DMN and ACN nodes during rest. Results have implications for understanding perceptual and cognitive changes after sleep deprivation and are relevant to clinical studies on conditions in which increased sleep propensity is present.  相似文献   

2.

Object

To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain.

Materials and methods

Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) 1H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia.

Results

Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01).

Conclusion

The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.  相似文献   

3.

Objective

This study presents an improved point-spread-function (PSF) mapping-based distortion correction method and accelerated PSF acquisition for distortion correction in EPI without loss of quality or reliability compared to full encoding.

Materials and methods

To correct geometric distortions accurately, the PSF in the EPI phase-encoding coordinates (EPI-PSF) was measured and used as a kernel for distortion correction. FOV reduction was applied in the PSF mapping dimension for highly accelerated PSF acquisition. A novel approach for fold-over artifact correction in this reduced dimension is introduced. Conventional gradient-echo EPI and corresponding full PSF reference data were acquired in phantoms and in human brain at 7 T. The distortion corrected EPI data with the proposed acceleration were compared to result with full encoding. Previously published interpolation methods based on shift maps, non-uniform Fourier transformation and a b-spline interpolation were compared with the proposed method.

Results

The results demonstrate that the proposed method corrects geometric distortions in EPI with high accuracy and quality despite the high acceleration. In contrast to partial parallel imaging acceleration, no noise enhancement is introduced.

Conclusion

The proposed EPI-PSF-based distortion correction improves correction of EPI and accelerates PSF reference data acquisition and computation.  相似文献   

4.

Object

To investigate the relationship of the different diffusion tensor imaging (DTI) parameters (ADC, FA, and first eigenvector (EV)) to the constituents (proteoglycans and collagen), the zonal arrangement of the collagen network, and mechanical loading of articular cartilage.

Material and methods

DTI of eight cartilage-on-bone samples of healthy human patellar cartilage was performed at 17.6 T. Three samples were additionally imaged under indentation loading. After DTI, samples underwent biomechanical testing, safranin-O staining for semiquantitative proteoglycan estimation, and scanning electron microscopy (SEM) for depicting collagen architecture.

Results

From the articular surface to the bone–cartilage interface, ADC continuously decreased and FA increased. Cartilage zonal heights calculated from EVs strongly correlated with SEM-derived zonal heights (P r 2=0.87). Compression reduced ADC in the superficial 30% of cartilage and increased FA in the superficial 5% of cartilage. Reorientation of the EVs indicative of collagen fiber reorientation under the indenter was observed. No significant correlation was found between ADC, FA, and compressive stiffness.

Conclusions

Correlating ADC and FA with proteoglycan and collagen content suggests that diffusion is dominated by different depth-dependent mechanisms within cartilage. Knowledge of the spatial distribution of the DTI parameters and their variation contributes to form a database for future analysis of defective cartilage.  相似文献   

5.

Objective

Acute kidney injury (AKI) is an important risk factor for a number of adverse outcomes including end-stage renal disease and cardiovascular morbidity and mortality. Whilst many clinical situations that can induce AKI are known—e.g. drug toxicity, contrast agent exposure or ischemia during surgery—targeted preventive or therapeutic measures are still lacking. As to renoprotective strategies, remote ischemic preconditioning (RIPC) is one of the most promising novel approaches and has been examined by a number of clinical trials. The aim of this study was to use blood oxygenation level-dependent (BOLD) MRI as a surrogate parameter to assess the effect of RIPC in healthy volunteers.

Materials and methods

In this IRB-approved, prospective study, 40 healthy volunteers were stratified with 20 undergoing an RIPC procedure (i.e. RIPC group) with a transient ischemia of the right arm, and 20 undergoing a sham procedure. Before and after the procedure, both kidneys of all participants were scanned using a 12-echo mGRE sequence for functional BOLD imaging at 3T. For each volunteer, 180 ROIs were placed in the cortex and the medulla of the kidneys. Ultimately, R2* values, which have an inverse correlation with the oxygenation level of tissue, were averaged for the RIPC and control groups.

Results

Following intervention, mean R2* values significantly decreased in the RIPC group in both the cortex (18.6 ± 2.3 vs. 17.5 ± 1.7 Hz; p = 0.0047) and medulla (34 ± 5.2 vs. 32.2 ± 4.2 Hz; p = 0.0001). However, no significant differences were observed in the control group.

Conclusion

RIPC can be non-invasively assessed in healthy volunteers using BOLD MRI at 3T, demonstrating a higher oxygen content in kidney tissue. This study presents a first-in-man trial establishing a quantifiable readout of RIPC and its effects on kidney physiology. BOLD measurements may advance clinical trials in further evaluating RIPC for future clinical care.
  相似文献   

6.

Objective

Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data.

Materials and methods

We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s).

Results

The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work.

Conclusion

Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease, and other motor disorders.
  相似文献   

7.

Object

To investigate the potential of a clinical 3 T scanner to perform MRI of small rodents.

Materials and methods

Different dedicated small animal coils and several imaging sequences were evaluated to optimize image quality with respect to SNR, contrast and spatial resolution. As an application, optimal grey-white-matter contrast and resolution were investigated for rats. Furthermore, manganese-enhanced MRI was applied in mice with unilateral crush injury of the optic nerve to investigate coil performance on topographic mapping of the visual projection.

Results

Differences in SNR and CNR up to factor 3 and more were observed between the investigated coils. The best grey-white matter contrast was achieved with a high resolution 3D T 2-weighted TSE (SPACE) sequence. Delineation of the retino-tectal projection and detection of defined visual pathway damage on the level of the optic nerve could be achieved by using a T 1-weighted, 3D gradient echo sequence with isotropic resolution of (0.2?mm)3.

Conclusions

Experimental studies in small rodents requiring high spatial resolution can be performed by using a clinical 3 T scanner with appropriate dedicated coils.  相似文献   

8.

Object

Diffusion tensor imaging (DTI) of the breast may provide a powerful new approach for the detection of intraductal processes. The aim of this investigation was to characterize the relation between diffusion tensor parameters [fractional anisotropy (FA), mean diffusivity (MD)] in normal breast tissue to obtain information on the microenvironment of the diffusing water molecules and to provide a systematic approach for DTI analysis.

Materials and methods

Seven female, healthy volunteers underwent prospective double-spin-echo prepared echo-planar diffusion-weighted sequence (TR/TE 8,250 ms/74 ms, b values 0 and 500 s/mm (2), six encoding directions, 12 averages, 35 slices) in 4 consecutive weeks (3.0 T). Quantitative maps of diffusion tensor parameters were computed offline with custom routines. The interdependence of MD and FA in different voxels was analysed by linear and exponential regression.

Results

All MD and FA maps were of excellent quality. A consistent pattern was observed in that lower fractional anisotropy values were more likely associated with higher mean diffusivity values. The dependence exhibited an exponential behavior with a correlation coefficient R = 0.60 (R linear = 0.57).

Conclusion

The likelihood with which FA and MD values are observed in a voxel within normal breast tissue is characterized by a specific pattern, which can be described by an exponential model. Moreover, we could show that the proposed technique does not depend on the menstrual cycle.  相似文献   

9.

Objective

Independent component analysis (ICA) has proven its applicability in both standard and resting-state fMRI. While there is consensus on single-subject ICA methodology, the extension to group ICA is more complex and a number of approaches have been suggested. Currently, two software packages are most frequently used for ICA group analysis: (1) GIFT introduced by Calhoun et al. [7], and (2) PICA, proposed by Beckmann et al. [3]. Both methods are based on the assumption of statistical independence of the extracted component maps (“spatial ICA”). Group maps are estimated via ICA on pre-calculated group data sets.

Material and Methods

In this study, we applied the two analysis approaches to a group of fMRI resting-state data sets obtained from twenty-eight healthy subjects. Default implementations were used and the number of components was restricted to 5, 10, 15, 20, 25, 30, and 35. The performance of GIFT and PICA was assessed with respect to the number of resting-state networks detected at different component estimation levels and computational load.

Results

At low component estimation levels GIFT analysis resulted in more RSNs than PICA, while for individually determined component levels both approaches obtained the same RSNs. Although component maps show some variability across the two methods, spatial and temporal comparison using correlation coefficients resulted in no significant differences between the RSNs detected across the different analyses

Conclusion

Our results show that both approaches provide an adequate way of group ICA obtaining a comparable number of RSNs differing mainly in calculation times.  相似文献   

10.

Objective

The purpose of this study was to assess changes in the tumor microvasculature induced by combination antiangiogenic therapy in MCF-7 breast tumor mouse models, using a noninvasive DCE-MRI method that minimizes the effect of water exchange.

Materials and methods

3D quantitative DCE-MRI images were acquired with a heavily T 1-weighted saturation recovery gradient echo sequence with a recovery delay of 20 ms. Tumor vascular volume (VV) and vascular permeability-surface area product (PS) were obtained through a linear regression of the albumin-Gd-DTPA-enhanced dynamic image intensity on MCF-7 breast tumor mouse models treated with combination bevacizumab/paclitaxel therapy.

Results

Measured tumor VV values were significantly higher than the values that have been reported previously using quantitative T 1 mapping, and are in good agreement with micro-CT (computed tomography) results reported earlier from other tumor models. A trend of decreasing tumor PS was detected in the group of MCF-7 tumor bearing mice treated with the bevacizumab/paclitaxel combination regimen.

Conclusion

VV and PS maps obtained by a heavily T 1-weighted acquisition protocol revealed the large peripheral blood vessels as well as the permeable areas within the tumor. A 12-day/three-dose combination treatment of bevacizumab and paclitaxel resulted in delayed tumor growth and a trend of decreasing tumor vascular permeability surface area product.  相似文献   

11.

Object

Dual-echo fast spin-echo (FSE) sequences are used in T 2 relaxometry studies of neurological disorders because of shorter clinical scanning times and protocol simplicity. However, FSE sequences have possible spatial frequency-dependent effects, and derived T 2 values may include errors that depend on the spatial frequency characteristics of the brain region of interest.

Materials and methods

Dual-echo FSE and multi-echo spin-echo (MESE) sequences were acquired in nine subjects. The T 2 decay curves for FSE and MESE sequences were estimated and percent error maps were generated. T 2 error values were obtained along each patient’s corticospinal tract (CST). Whole-brain white matter (WM) and gray matter (GM) T 2 error values were also obtained. The paired t test was performed to evaluate differences in T 2 values in the CST between FSE and MESE sequences.

Results

Histograms of error values in CST and in whole-brain WM and GM structures revealed systematic errors in FSE sequences. Significant differences (P < 0.001) in CST T 2 values were also observed between FSE and MESE sequences.

Conclusion

Our findings indicate that T 2 values derived from FSE sequences are prone to large errors, even in low spatial frequency regions such as the CST, when compared to MESE sequences. Future studies should be aware of this limitation of FSE sequences.  相似文献   

12.

Objective

In this paper, we develop a dynamic functional network connectivity (FNC) analysis approach using correlations between windowed time-courses of different brain networks (components) estimated via spatial independent component analysis (sICA). We apply the developed method to fMRI data to evaluate it and to study task-modulation of functional connections.

Materials and methods

We study the theoretical basis of the approach, perform a simulation analysis and apply it to fMRI data from schizophrenia patients (SP) and healthy controls (HC). Analyses on the fMRI data include: (a) group sICA to determine regions of significant task-related activity, (b) static and dynamic FNC analysis among these networks by using maximal lagged-correlation and time–frequency analysis, and (c) HC–SP group differences in functional network connections and in task-modulation of these connections.

Results

This new approach enables an assessment of task-modulation of connectivity and identifies meaningful inter-component linkages and differences between the two study groups during performance of an auditory oddball task (AOT). The static FNC results revealed that connectivities involving medial visual–frontal, medial temporal–medial visual, parietal–medial temporal, parietal–medial visual and medial temporal–anterior temporal were significantly greater in HC, whereas only the right lateral fronto-parietal (RLFP)–orbitofrontal connection was significantly greater in SP. The dynamic FNC revealed that task-modulation of motor–frontal, RLFP–medial temporal and posterior default mode (pDM)–parietal connections were significantly greater in SP, and task modulation of orbitofrontal–pDM and medial temporal–frontal connections were significantly greater in HC (all P < 0.05).

Conclusion

The task-modulation of dynamic FNC provided findings and differences between the two groups that are consistent with the existing hypothesis that schizophrenia patients show less segregated motor, sensory, cognitive functions and less segregated default mode network activity when engaged with a task. Dynamic FNC, based on sICA, provided additional results which are different than, but complementary to, those of static FNC. For example, it revealed dynamic changes in default mode network connectivities with other regions which were significantly different in schizophrenia in terms of task-modulation, findings which were not possible to discover by static FNC.  相似文献   

13.

Object

The anterior commissure is a critical interhemispheric pathway in animals, yet its connections in humans are not clearly understood. Its distribution has shown to vary greatly between species, and it is thought that in humans it may convey axons from a larger territory than previously thought. The aim was to use an anatomical mapping tool to look at the anterior commissure fibres and to compare the distribution findings with published anatomical understanding.

Materials and methods

Two different diffusion-weighted imaging data sets were acquired from eight healthy subjects using a 3 Tesla MR scanner with 32 gradient directions. Diffusion tensor imaging tractography was performed, and the anterior commissure fibres were selected using three-dimensional regions of interest. Distribution of the fibres was observed by means of registration with T2-weighted images. The fibre field similarity maps were produced for five of the eight subjects by comparing each subject’s fibres to the combined map of the five data sets.

Results

Fibres were shown to lead into the temporal lobe and towards the orbitofrontal cortex in the majority of subjects. Fibres were also distributed to the parietal or occipital lobes in all five subjects in whom the anterior commissure was large enough for interhemispheric fibres to be tracked through. The fibre field similarity maps highlighted areas where the local distances of fibre tracts were displayed for each subject compared to the combined bundle map.

Conclusion

The anterior commissure may play a more important role in interhemispheric communication than currently presumed by conveying axons from a wider territory, and the fibre field similarity maps give a novel approach to quantifying and visualising characteristics of fibre tracts.  相似文献   

14.

Object

The aim of our study was to enable automatic volumetry of the entire kidneys as well as their internal structures (cortex, medulla, and pelvis) from native magnetic resonance imaging (MRI) data sets.

Materials and methods

Segmentation of the entire kidneys and differentiation of their internal structures were performed in 12 healthy volunteers based on non-contrast-enhanced T1- and T2-weighted MR images. Two data sets (each acquired in one breath-hold) were co-registered using a rigid registration algorithm compensating for possible breathing-related displacements. An automatic algorithm based on thresholding and shape detection segmented the kidneys into their compartments and was compared to a manual labeling procedure.

Results

The resulting kidney volumes of the automated segmentation correlated well with those created manually (R 2 = 0.96). Average volume errors were determined to be 4.97 ± 4.08 % (entire kidney parenchyma), 7.03 ± 5.56 % (cortex), 12.33 ± 7.35 % (medulla), and 17.57 ± 14.47 % (pelvis). The variation of the kidney volume resulting from the automatic algorithm was found to be 4.76 % based on the measuring of one volunteer with three independent examinations.

Conclusion

The results demonstrate the feasibility of an accurate and repeatable automatic segmentation of the kidneys and their internal structures from non-contrast-enhanced magnetic resonance images.  相似文献   

15.

Object

The EU directive on safety requirements (2004/40/EC) limits the exposure to time varying magnetic fields to dB /dt = 200 mT/s. This action value is not clearly defined as it considers only the temporal change of the magnitude of ${\vec {B}}$ . Thus, only the translational motion in the magnet??s fringe field is considered and rotations are neglected.

Materials and methods

A magnetic field probe was constructed to simultaneously record the magnetic flux density ${\vec{B}}$ (x, y, z) with a 3-axis Hall sensor and the induced voltage due to movements with a set of three orthogonal coils. Voltages were converted into time-varying magnetic flux d ??(x, y, z)/dt serving as an exposition parameter for both translations and rotations. To separate the two types of motion, d B/dt was additionally calculated on the basis of the Hall sensor??s data. The calibrated probe was attached to the forehead of 8 healthcare workers and 17 MR physicists, and ${\vec {B}}$ and d??/dt were recorded during standard operating procedures at three different MR systems up to 7 T.

Results

The maximum percentage of the translational motion referring the data including both translations and rotations amounts to 32%. During volunteer measurements, maximum exposure values of d??/dt = 21 mWb/s, dB/dt = 1.40 T/s and ${\left| {\vec {B}}\right|= 2.75}$ Twere found.

Conclusion

The findings in this work indicate that both translations and rotations in the vicinity of an MR system should be taken into account, and that a single regulatory action level might not be sufficient.  相似文献   

16.

Object

The goal of the study was to determine blood T 1 and T 2 values as functions of oxygen saturation (Y), temperature (Temp) and hematocrit (Hct) at an ultrahigh MR field (11.7?T) and explore their impacts on physiological measurements, including cerebral blood flow (CBF), blood volume (CBV) and oxygenation determination.

Materials and methods

T 1 and T 2 were simultaneously measured. Temperature was adjusted from 25 to 40°C to determine Temp dependence; Hct of 0.17?C0.51 to evaluate Hct dependence at 25 and 37°C; and Y of 40?C100% to evaluate Y dependence at 25 and 37°C. Comparisons were made with published data obtained at different magnetic field strengths (B 0).

Results

T 1 was positively correlated with Temp, independent of Y, and negatively correlated with Hct. T 2 was negatively correlated with Temp and Hct, but positively correlated with Y, in a non-linear fashion. T 1 increased linearly with B 0, whereas T 2 decreased exponentially with B0.

Conclusion

This study reported blood T 1 and T 2 measurements at 11.7?T for the first time. These blood relaxation data could have implications in numerous functional and physiological MRI studies at 11.7?T.  相似文献   

17.

Object

Diffusion weighted imaging (DWI) of the liver suffers from low signal to noise making 3 Tesla (3 T) an attractive option, but 3 T data is scarce. It was the aim to study the influence of different b values and respiratory compensation methods (RCM) on the apparent diffusion coefficient (ADC) level and on ADC reproducibility at 3 T.

Materials and methods

Ten healthy volunteers and 12 patients with malignant liver lesions underwent repeated (2–22 days) breathhold, free-breathing and respiratory triggered DWI at 3 T using b values between 0 and 1,000 s/mm2.

Results

The ADCs changed up to 150 % in healthy livers and up to 48 % in malignant lesions depending on b value combinations. Best ADC reproducibility in healthy livers were obtained with respiratory triggering (95 % limits of agreement: ±0.12) and free-breathing (±0.14). In malignant lesions equivalent reproducibility was obtained with less RCM dependence. The use of a lower maximum b value (b = 500) decreased reproducibility (±0.14 to ±0.32) in both normal liver and malignant lesions.

Conclusion

Large differences in absolute ADC values and reproducibility caused by varying combinations of clinically realistic b values were demonstrated. Different RCMs caused smaller differences. Lowering maximum b value to 500 increased limits of agreement up to a factor of two. Serial ADC changes larger than approximately 15 % can be detected confidently on an individual basis in both malignant lesions and normal liver parenchyma at 3 T using appropriate b values and respiratory compensation.  相似文献   

18.

Object

Imaging of myocardial infarct composition is essential to assess efficacy of emerging therapeutics. T 2 * mapping has the potential to image myocardial hemorrhage and fibrosis by virtue of its short T 2 * . We aimed to quantify T 2 * in acute and chronic myocardial ischemia/reperfusion (I/R) injury in mice.

Materials and methods

I/R-injury was induced in C57BL/6 mice (n?=?9). Sham-operated mice (n?=?8) served as controls. MRI was performed at baseline, and 1, 7 and 28?days after surgery. MRI at 9.4?T consisted of Cine, T 2 * mapping and late-gadolinium-enhancement (LGE). Mice (n?=?6) were histologically assessed for hemorrhage and collagen in the fibrotic scar.

Results

Baseline T 2 * values were 17.1?±?2.0?ms. At day 1, LGE displayed a homogeneous infarct enhancement. T 2 * in infarct (12.0?±?1.1?ms) and remote myocardium (13.9?±?0.8?ms) was lower than at baseline. On days 7 and 28, LGE was heterogeneous. T 2 * in the infarct decreased to 7.9?±?0.7 and 6.4?±?0.7?ms, whereas T 2 * values in the remote myocardium were 14.2?±?1.1 and 15.6?±?1.0?ms. Histology revealed deposition of iron and collagen in parallel with decreased T 2 * .

Conclusion

T 2 * values are dynamic during infarct development and decrease significantly during scar maturation. In the acute phase, T 2 * values in infarcted myocardium differ significantly from those in the chronic phase. T 2 * mapping was able to confirm the presence of a chronic infarction in cases where LGE was inconclusive. Hence, T 2 * may be used to discriminate between acute and chronic infarctions.  相似文献   

19.

Objective

The present work introduces an alternative to the conventional \(B_{0}\) -gradient spatial phase encoding technique. By applying far off-resonant radiofrequency (RF) pulses, a spatially dependent phase shift is introduced to the on-resonant transverse magnetization. This so-called Bloch–Siegert (BS) phase shift has been recently used for \(B_{1}^{ + }\) -mapping. The current work presents the theoretical background for the BS spatial encoding technique (BS-SET) using RF-gradients.

Materials and methods

Since the BS-gradient leads to nonlinear encoding, an adapted reconstruction method was developed to obtain undistorted images. To replace conventional phase encoding gradients, BS-SET was implemented in a two-dimensional (2D) spin echo sequence on a 0.5 T portable MR scanner.

Results

A 2D spin echo (SE) measurement imaged along a single dimension using the BS-SET was compared to a conventional SE 2D measurement. The proposed reconstruction method yielded undistorted images.

Conclusions

BS-gradients were demonstrated as a feasible option for spatial phase encoding. Furthermore, undistorted BS-SET images could be obtained using the proposed reconstruction method.  相似文献   

20.
In vivo chlorine and sodium MRI of rat brain at 21.1 T   总被引:1,自引:1,他引:0  

Object

MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development.

Materials and methods

MRI of 35Cl and 23Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method.

Results

T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of $ T_{{2{\text{a}}}}^{*} = 0.4 $  ms and $ T_{{2{\text{a}}}}^{*} = 0.53 $  ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain.

Conclusion

The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号