首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this paper is to provide guidance to food processors in controlling Listeria monocytogenes in food-processing environments. Of particular concern are outbreaks of a few to several hundred scattered cases involving an unusually virulent strain that has become established in the food-processing environment and contaminates multiple lots of food over days or months of production. The risk is highest when growth occurs in a food before it is eaten by a susceptible population. The information presented in this paper provides the basis for the establishment of an environmental sampling program, the organization and interpretation of the data generated by this program, and the response to Listeria-positive results. Results from such a program, including examples of niches, are provided. Technologies and regulatory policies that can further enhance the safety of ready-to-eat foods are discussed.  相似文献   

2.
Contamination analysis of persistent and nonpersistent Listeria monocytogenes strains in three meat processing plants and one poultry processing plant were performed in order to identify factors predisposing to or sustaining persistent plant contamination. A total of 596 L. monocytogenes isolates were divided into 47 pulsed-field gel electrophoresis (PFGE) types by combining the restriction enzyme patterns of AscI (42 patterns) and ApaI (38 patterns). Persistent and nonpersistent strains were found in all plants. Nonpersistent PFGE types were found mostly at one sampling site, with the processing environment being the most common location, whereas the persistent strains were found at several sampling sites in most cases. The processing machines were frequently contaminated with persistent L. monocytogenes PFGE types, and it was of concern that surfaces having direct contact with the products were contaminated. The role of the processing machines in sustaining contamination and in contaminating the products appeared to be important because the final product of several processing lines was contaminated with the same L. monocytogenes PFGE type as that found in the processing machine. The proportion of persistent PFGE types in heat-treated products was eight times higher than in the raw products, showing the importance of the persistent PFGE types as contaminants of the final heat-treated products. The contamination status of the processing lines and machines appeared to be influenced by the compartmentalization of the processing line, with poor compartmentalization increasing L. monocytogenes contamination. The separation of raw and post-heat treatment areas seemed especially important in the contamination status of post-heat treatment lines.  相似文献   

3.
Listeriosis is a relatively rare foodborne illness but can be life threatening with high fatality rates. In Japan, the incidence of listeriosis has been very low for the past 40 years compared with that of Western Europe and North America. We hypothesized that less Listeria monocytogenes contamination in Japanese foods would be related to the lower incidence in Japan. For this purpose, we collected data of Japanese foods contaminated with L. monocytogenes, mainly from Japanese-written reports, and reviewed them. From this review, we found that the proportion of L. monocytogenes, Listeria spp. isolation from foods in Japan is similar to those reported from other countries and that other factors might be responsible for the lower occurrence of listeriosis.  相似文献   

4.
The sites of Listeria monocytogenes contamination in three cold-smoked salmon (Salmo salar) processing plants were detected by sampling salmon and the plant's environment and equipment at different production stages. Of the 141 samples collected from three processing plants, 59 (42%) were contaminated with L. monocytogenes. The rates of contamination varied as to the plant and the sample source. L. monocytogenes isolates from 17 various contaminated seafood products (fresh, frozen and smoked fishes, cooked mussels) were also studied. A total of 155 isolates from the three plants and the various seafoods were characterized by genomic macrorestriction using ApaI and SmaI with pulsed-field gel electrophoresis (PFGE) and 82 isolates were serotyped. Macrorestriction yielded 20 pulsotypes and serotyping yielded four serovars: 1/2a, 1/2b, 1/2c, 4b (or e), with 77 (93%) belonging to serovar 1/2a. One clone of L. monocvtogenes predominated and persisted in plant I and was the only pulsotype detected in the final product although it was not isolated from raw salmon. No L. monocytogenes was detected in the smoked skinned salmon processed in plant II, even though 87% of the raw salmon was contaminated. All the smoked salmon samples collected in plant III were contaminated with a unique clone of L. monocytogenes, which may have occurred during slicing. In the three plants, the contamination of final products did not seem to originate from the L. monocytogenes present on raw salmon, but from the processing environment.  相似文献   

5.
Cross contamination of Listeria monocytogenes from two different surfaces (plastic wrappers and stainless steel coupons) was simulated using a series of different weights. Enumeration of transfer was based on surface bacterial counts of biofilm stained surfaces. Direct contact between 2 surfaces has a constant rate of transfer that is independent of the pressure applied. This is the first report on the study of cross contamination between surfaces using pressure to illustrate transfer of bacteria in a food processing line.  相似文献   

6.
《Food microbiology》2000,17(4):393-400
Twenty-three Listeria monocytogenes strains isolated from two food-processing plants, which produce fresh sauces, were serologically characterized and tested by the mouse biological assay and molecular typing by pulsed-field gel electrophoresis (PFGE). The use of PFGE for the characterization of these L. monocytogenes strains provided, in plant A, valuable information about potential sites of cross-contamination and in plant B, a valuable insight into the presence of endemic strains. The use of highly discriminating typing techniques such as PFGE and the thorough observance of GMPs and the HACCP system can reduce the incidence of L. monocytogenes in food-processing plants.  相似文献   

7.
This study aimed to establish the occurrence of Listeria spp., especially L. monocytogenes and its main serotypes, in beef and processing plants. A total of 443 samples were obtained from equipment, installations and products from 11 meat processing establishments from Paraná state, Brazil. All samples were analyzed using USDA methodology for Listeria spp. detection, followed by species identification. The occurrence of Listeria spp. in the samples was 38.1% of which 51.4% were from equipment, 35.4% from installations and 30.2% from products. The identified species were: L. monocytogenes (12.6%), L. innocua (78.4%), L. seeligeri (1.2%), L. welshimeri (7.2%) and L. grayi (0.6%). The identified serotypes of L. monocytogenes were 1/2a and 4b. The results demonstrate the significance of equipment and installations as sources of contamination by Listeria spp. and L. monocytogenes in the processing of beef and meat products.  相似文献   

8.
One hundred one strains of Listeria monocytogenes isolated from seafood and cheese industry samples and from patients with listeriosis were assessed using a microtiter plate method for adhesion to polystyrene and stainless steel surfaces. The adhesion rate for these strains ranged from 3.10 to 35.29% with an inoculum of 8 x 10(8) cells per well. A strong correlation was found between adhesion to polystyrene and stainless steel microtiter plates, indicating that the intrinsic ability of L. monocytogenes to adhere to inert surfaces is stronger than the influence of the surface's physicochemical properties. The clinical strains were less adherent to inert surfaces than were the industrial strains. By integrating other factors such as location of the industrial strains, contamination type of the clinical strains, serotype, and pulsotype into the analysis, some weak but significant differences were noted. For the industrial isolates, the number of cells attached to both surfaces differed significantly depending on whether they were isolated from food or food-processing environments in the seafood and cheese industry. For clinical isolates, sporadic strains exhibited greater adhesion to polystyrene than did epidemic strains. Strains belonging to the pulsed-field gel electrophoretype clusters A and M (lineages II and I, respectively) were less able to adhere to polystyrene and stainless steel than were strains in the more common clusters.  相似文献   

9.
目的分析散装熟肉制品中单增李斯特菌污染状况。方法根据GB 4789.30-2016《单核细胞增生李斯特氏菌检验》规定的方法对散装熟肉制品的加工用原料、生产环境、各加工环节中产品以及不同销售环境下产品中的单增李斯特菌进行定性和定量检测。结果原料肉的总体带菌率达到21%;生产环境中第三区(远离食品接触面的区域)检出率为2%,其余区域未检出;各加工环节中产品单增李斯特菌检测结果均小于10CFU/g;不同销售环境下产品中单增李斯特菌检测结果小于10 CFU/g的比例为93%,处于10~50 CFU/g之间的样本占比6%,大于50 CFU/g的占比为1%。结论原料散装熟肉制品中单增李斯特菌污染的主要来源,蒸煮等加工环节能有效地杀灭单增李斯特菌。销售环境也关系到散装熟肉制品单增李斯特菌的污染程度,对于未包装的产品,专卖店优于农产品市场。  相似文献   

10.
Contamination of dairy products with Listeria monocytogenes is a concern because multiple human listeriosis outbreaks have been linked to contaminated cheese and dairy products. Dairy production on farmstead operations may be a particular concern because L. monocytogenes is also an animal pathogen that can be shed by ruminants with and without clinical symptoms; physical proximity between production animal and dairy processing facilities may thus provide a higher risk for introduction of L. monocytogenes into the dairy production process. To better understand the risks of L. monocytogenes contamination associated with farmstead dairy production, samples from a farmstead dairy processing operation and the milking barn of the directly adjacent dairy sheep operation were tested for L. monocytogenes over a 3-yr period. Prevalence of L. monocytogenes for samples collected on the farm (n = 85) and the dairy production facility (n = 674) was 9.4 and 2.7%, respectively. Molecular subtyping using automated EcoRI ribotyping of L. monocytogenes isolates revealed that distinct subtypes were associated with the dairy production facility and the farm's milking parlor. Although a total of 5 and 4 different ribotypes were identified among isolates obtained from the dairy production facility and the milking parlor, respectively, only 1 ribotype (DUP-1030A) was isolated from both. Different ribotypes were predominant among isolates from the dairy production facility (ribotype DUP-1052A, representing 15 of 18 isolates) and the farm's milking parlor (ribotype DUP-1039A, representing 4 of 8 isolates); each of these ribotypes appeared to persist over time in the respective area. Our data support that i) in farmstead dairy processing facilities, L. monocytogenes present on the farm can largely be prevented from being introduced into the processing facility; and ii) L. monocytogenes can persist on farm and in processing areas, providing a potential high-risk source for contamination. Preventing cross contamination between dairy production and processing facilities and control of persistent L. monocytogenes are thus critical to assuring the microbial safety of farmstead dairy products.  相似文献   

11.
Four smoked fish processing plants were used as a model system to characterize Listeria monocytogenes contamination patterns in ready-to-eat food production environments. Each of the four plants was sampled monthly for approximately 1 year. At each sampling, four to six raw fish and four to six finished product samples were collected from corresponding lots. In addition, 12 to 14 environmental sponge samples were collected several hours after the start of production at sites selected as being likely contamination sources. A total of 234 raw fish, 233 finished products, and 553 environmental samples were tested. Presumptive Listeria spp. were isolated from 16.7% of the raw fish samples, 9.0% of the finished product samples, and 27.3% of the environmental samples. L. monocytogenes was isolated from 3.8% of the raw fish samples (0 to 10%, depending on the plant), 1.3% of the finished product samples (0 to 3.3%), and 12.8% of the environmental samples (0 to 29.8%). Among the environmental samples, L. monocytogenes was found in 23.7% of the samples taken from drains, 4.8% of the samples taken from food contact surfaces, 10.4% of the samples taken from employee contact surfaces (aprons, hands, and door handles), and 12.3% of the samples taken from other nonfood contact surfaces. Listeria spp. were isolated from environmental samples in each of the four plants, whereas L. monocytogenes was not found in any of the environmental samples from one plant. Overall, the L. monocytogenes prevalence in the plant environment showed a statistically significant (P < 0.0001) positive relationship with the prevalence of this organism in finished product samples. Automated EcoRI ribotyping differentiated 15 ribotypes among the 83 L. monocytogenes isolates. For each of the three plants with L. monocytogenes-positive environmental samples, one or two ribotypes seemed to persist in the plant environment during the study period. In one plant, a specific L. monocytogenes ribotype represented 44% of the L. monocytogenes-positive environmental samples and was also responsible for one of the two finished product positives found in this plant. In another plant, a specific L. monocytogenes ribotype persisted in the raw fish handling area. However, this ribotype was never isolated from the finished product area in this plant, indicating that this operation has achieved effective separation of raw and finished product areas. Molecular subtyping methods can help identify plant-specific L. monocytogenes contamination routes and thus provide the knowledge needed to implement improved L. monocytogenes control strategies.  相似文献   

12.
The antimicrobial activity of acidified sodium chlorite (ASC) against Listeria monocytogenes in salmon was studied. Raw salmon (whole fish and fillets) inoculated with L. monocytogenes (10(3) CFU/cm2 or 10(4) CFU/g) were washed with ASC solution (50 ppm) for 1 min and stored at -18 degrees C for 1 month (whole salmon) or in ice for 7 days (fillets). L. monocytogenes populations were determined for whole salmon after frozen storage and for fillets on days 1, 3, 5, and 7 of storage. A wash with ASC solution followed by ASC glazing did not reduce L. monocytogenes on the skin of whole salmon during frozen storage. However, the wash resulted in an L. monocytogenes reduction of 0.5 log CFU/g for salmon fillets. The populations of L. monocytogenes in fillets increased slowly during ice storage, but the growth of these populations was retarded by ASC ice. By day 7, the populations were 0.25 log units smaller in fillets stored in ASC ice and 0.62 log units smaller in fillets that had been washed with ASC solution and stored in ASC ice than in control fillets. Treatment with ASC also reduced total plate counts (TPCs) by 0.43 log CFU/cm2 on the skin of whole salmon and by 0.31 log CFU/g in fillets. The TPCs for skin decreased during frozen storage but increased gradually for fillets stored at 5 degrees C or in ice. However, TPCs of ASC-treated samples were lower than those for controls at any point during the study. Washing with ASC solution significantly (P < 0.05) reduced TPCs on the skin of whole salmon and in fillets, as well as L. monocytogenes in fillets. The antimicrobial activity of ASC was enhanced when salmon was washed with ASC solution and stored in ASC ice.  相似文献   

13.
ABSTRACT: Listeria monocytogenes has been implicated in several listeriosis outbreaks linked to the consumption of presliced ready‐to‐eat (RTE) deli meats, which has drawn considerable attention in regard to possible cross‐contamination during slicing operation at retail and food service environments. Salami with 15% fat (a moderate fat content deli item) was used to investigate the transfer of L. monocytogenes between a meat slicer and salami slices and to understand its impact on food safety. A 6‐strain cocktail of L. monocytogenes was inoculated onto a slicer blade to an initial level of approximately 3, 5, 6, 7, or 9 log CFU/blade (or approximately 2, 4, 5, 6, or 8 log CFU/cm2 of the blade edge area), and then the salami was sliced to a thickness of 1 to 2 mm (case I). For another cross‐contamination scenario, a clean blade was first used to slice salami loaf that was previously surface‐inoculated with L. monocytogenes (approximately 3, 5, 6, 7, 8, or 9 log CFU/100 cm2 area), followed by slicing the uninoculated salami loaf (case II). The salami slicing rate was maintained at an average of 3 to 4 slices per minute in all the tests. The results showed that the empirical models developed in this study were reasonably accurate in describing the transfer trend/pattern of L. monocytogenes between the blade and salami slices if the inoculum level was > 5 log CFU on the salami or blade. With an initial inoculum at 3 or 4 log CFU, the experimental data seemed to suggest a rather random pattern of bacterial transfer between blade and salami. The currently developed models are microbial load (n), sequential slice index (X), and contamination route dependent, which might limit their applications to certain conditions. However, the models may be further applied to predict the 3 or 4 log CFU level (and below) cross‐contamination of salami slicing process. Considering only few data are available in the literature regarding food pathogen surface transfer, the empirical models may provide a useful tool in building risk assessment procedures.  相似文献   

14.
15.
Retail foods in Japan were surveyed for the presence and contamination levels of L. monocytogenes. It was isolated from 12.2, 20.6, 37.0 and 25.0% of 41 minced beef, 34 minced pork, 46 minced chicken and 16 minced pork-beef mixture samples, respectively. MPN values were higher than 100/g in five (10.9%) minced chicken samples, but lower than 100/g in all minced beef, pork and pork-beef mixture samples. The organism was also isolated from 5.4% of the 92 smoked salmon samples at MPN values lower than 10/g, and from 3.3% of 213 ready-to-eat raw seafood samples at MPN values from lower than 0.3 to higher than 100/g. None of the 285 vegetable samples were contaminated with L. monocytogenes. These findings indicate that ready-to-eat raw seafoods are relatively high risk among the foods surveyed in this study.  相似文献   

16.
A case of listeriosis was associated with the consumption of a soft cheese produced in England. Goats cheese and other products from the same food manufacturer were examined for the presence of Listeria over the following 11 months. Listeria monocytogenes was isolated from 16 of 25 cheese samples on retail sale, 12 of 24 cheese samples obtained directly from the factory, and from shelving within the plant. Phage-typing of 68 isolates of L. monocytogenes from cheese samples and the factory showed that 66 (97%) were indistinguishable from the strain isolated from the patient's cerebrospinal fluid and stool. L. monocytogenes was not isolated from seven goats milk or two yoghurt samples. Listeria innocua was isolated from 10 cheese samples, two of which contained no other species of Listeria. Levels of L. monocytogenes shortly after production were low (<10/g), but were higher (105–107 cfu/g) in six of the 16 cheese samples obtained from retail outlets. Multiplication of L. monocytogenes was demonstrated in cheeses contaminated at the factory and held at 4°C in the laboratory.  相似文献   

17.
《Food microbiology》1999,16(5):465-477
The occurrence and distribution of listeriae in a meat processing plant was studied to determine the major sources and routes of contamination. Listeria monocytogenes and other Listeria spp. were isolated from 51% and 49% of samples of frozen raw meat taken from several incoming lots. Turkey necks and breasts, pork trimmings and lard were the principal sources of initial contamination. As a consequence, listeriae colonized certain processing sites where raw materials were handled and hygienic conditions were not strict. Mainly tumbled meats were contaminated heavily during tumbling as the need to operate tumblers continuously did not enable their proper cleaning and disinfection on a daily basis. Also the use of mechanically deboned turkey-neck meat in cooked sausages raised contamination at a pre-cooking stage. Listeriae survived in tumbled meats cooked in boilers at core temperatures below 70°C, and in country-style sausages heated to 65–68°C. In contrast, listeriae were killed in oven-cooked tumbled meats and emulsion-type sausages heated to 72–75°C, and in fully ripened salamis. Heat survivors appeared to be the main cause of post-process contamination as spreading of listeriae in the cutting room was restricted to processing lines where precontaminated meat products were handled. The possible reasons leading to heat survival of listeriae and the measures taken to control the problem were discussed.  相似文献   

18.
《Food microbiology》1994,11(4):309-316
Three Swiss fish farms, farming rainbow trout (Oncorhynchus mykiss), and their affiliated smoking plants were analyzed for the presence of Listeria spp. 590 samples were collected from the farming environment (raceway water, sludge), faecal content and skin of the fish, fish during processing, and the processing environment.Listeria spp. were found at prevalences of 2·3% in plant A, 31·6% in plant B (mainly L. monocytogenes), and 13·8% in plant C (mainly L. innocua). This high contamination rate in plant B may be explained by the following facts: (i) farm B uses river water flowing through agricultural land; (ii) plant B rears fish in earth ponds instead of concrete ponds or raceways; (iii) fish from farm B had not been denied feed prior to slaughter; and (iv) total lack of regular mechanical and chemical cleaning in the fish farm B and processing plant B.In all three plants samples taken after smoking but before packaging did not contain Listeria spp., although in plant B and C the raw fish was contaminated. Hygienic defaults during packaging can lead to contaminated ready-to-eat products, detected in plant B (L. monocytogenes) and plant C (L. innocua) with one sample each. To minimize a possible health hazard to the consumer, it is of great importance to prevent postprocessing contamination of smoked fish.Finally, means of preventing Listeria contamination during farming, slaughtering, processing and storage are suggested.  相似文献   

19.
Persistent and non-persistent Listeria monocytogenes strains were tested for initial resistance and adaptive and cross-adaptive responses towards two quaternary ammonium compounds, alkyl-benzyl-dimethyl ammonium chloride and n-alkyldimethyl ethylbenzyl ammonium chloride, one tertiary alkylamine, 1,3-propanediamine-N-(3-aminopropyl)N-dodecyl, sodium hypochlorite and potassium persulphate. The initial resistance of two persistent and two non-persistent L. monocytogenes strains was observed to differ. Both types of strains adapted after a 2-h sublethal exposure to the quaternary ammonium compounds and the tertiary alkylamine, the highest increase in the minimum inhibitory concentration (MIC) being 3-fold. Progressively increasing disinfecting concentrations at 10 and 37 degrees C resulted in adaptation of L. monocytogenes to all disinfectants except potassium sulphate. The highest observed increase in MIC was over 15-fold, from 0.63 to 10 microg/ml of n-alkyldimethyl ethylbenzyl ammonium chloride. All strains reached approximately similar MICs. Stability of the increased resistance was tested by measuring MICs every seventh day for 28 days. The increased resistance to sodium hypochlorite disappeared in 1 week, but the quaternary ammonium compounds and the tertiary alkylamine showed increased resistance for 28 days. These results suggest that cellular changes due to adaptive responses continue to have an effect on the resistance some time after the exposure. All disinfectants were shown to cause cross-adaptation of L. monocytogenes, the highest increase in MIC being almost 8-fold. The only agent that L. monocytogenes could not be shown to cross-adapt to was potassium persulphate which did, however, cause cross-adaptation to the other disinfectants. The mechanism behind these adaptive responses seemed to be non-specific as cross-adaptation was observed not only between related but also unrelated disinfectants. These findings suggest that sustaining high disinfectant effectiveness may be unsuccessful by rotation, even when using agents with different mechanisms of action.  相似文献   

20.
A product-specific model was developed and validated under dynamic temperature conditions for predicting the growth of Listeria monocytogenes in pasteurized vanilla cream, a traditional milk-based product. Model performance was also compared with Growth Predictor and Sym'Previus predictive microbiology software packages. Commercially prepared vanilla cream samples were artificially inoculated with a five-strain cocktail of L. monocytogenes, with an initial concentration of 102 CFU g(-1), and stored at 3, 5, 10, and 15 degrees C for 36 days. The growth kinetic parameters at each temperature were determined by the primary model of Baranyi and Roberts. The maximum specific growth rate (mu(max)) was further modeled as a function of temperature by means of a square root-type model. The performance of the model in predicting the growth of the pathogen under dynamic temperature conditions was based on two different temperature scenarios with periodic changes from 4 to 15 degrees C. Growth prediction for dynamic temperature profiles was based on the square root model and the differential equations of the Baranyi and Roberts model, which were numerically integrated with respect to time. Model performance was based on the bias factor (B(f)), the accuracy factor (A(f)), the goodness-of-fit index (GoF), and the percent relative errors between observed and predicted growth. The product-specific model developed in the present study accurately predicted the growth of L. monocytogenes under dynamic temperature conditions. The average values for the performance indices were 1.038, 1.068, and 0.397 for B(f), A(f), and GoF, respectively for both temperature scenarios assayed. Predictions from Growth Predictor and Sym'Previus overestimated pathogen growth. The average values of B(f), A(f), and GoF were 1.173, 1.174, and 1.162, and 1.267, 1.281, and 1.756 from Growth Predictor and Sym'Previus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号