首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用喷雾干燥-氢气还原法制备超细/纳米晶W-20Cu(质量分数,%)复合粉末,粉末压坯直接从室温推入高温区烧结不同时间后直接取出水淬,研究其烧结致密化和显微组织的变化。结果表明,超细/纳米晶W-20Cu粉末在1000~1200℃烧结时发生迅速致密化。粉末压坯在1200℃烧结60min,其材料致密度已达到96.4%。1420℃烧结90min时致密度达到99%以上。1100~1420℃烧结时其烧结致密化活化能不断减小,从1100℃时的276.3kJ/mol减小到1420℃时的29.1kJ/mol。当温度低于1200℃时,W晶粒长大不明显,当温度超过1300℃时,W晶粒开始有明显长大。随温度的升高W晶粒发生显著球形化,1420℃烧结时发现其晶粒长大符合G3=kt的Ostwald机制,此时晶粒长大动力学系数K仅为0.024μm3/min。  相似文献   

2.
《硬质合金》2017,(4):233-242
选取两批超细钨粉,其中一批粒度分布均匀性较差,团粒较多;另一批粉末粒度分布均匀,团粒少。将两批钨粉在相同条件下进行碳化,制备成超细碳化钨,并分别配制成相同牌号的超细硬质合金,研究碳化钨团粒与钨粉团粒的关联性及碳化钨团粒对合金晶粒异常长大的影响。研究结果表明,碳化钨的团粒继承了钨粉团粒的基本特征,碳化过程会使团粒烧结致密化,钨粉、碳化钨粉团粒内部晶粒极细、结晶不完整、缺陷多。湿磨过程可以将碳化钨的团粒完全破碎分散,但是会生成大量活性高、结晶不完整、缺陷较为严重的纳米粒子,降低了粉末的均匀性。超细硬质合金晶粒异常长大与碳化钨的团粒有直接关系,碳化钨团粒中结晶不完整的碳化钨粒子是导致合金晶粒异常长大的主要原因。  相似文献   

3.
CoSb3纳米晶块体热电材料的制备研究   总被引:6,自引:0,他引:6  
采用机械合金化.放电等离子烧结工艺(MA-SPS),在200℃~600℃之间制备了纳米晶CoSb3合金块体材料。采用XRD和TEM对材料的相组成和微观组织进行了测试分析。实验结果表明,烧结前粉末为高能球磨得到的平均晶粒尺寸为20nm~35nm的纳米晶CoSb3粉末,SPS烧结后CoSb3合金块体的平均晶粒尺寸小于100nm,其致密度达到了91.3%~99.6%。CoSb3块体的晶粒尺寸随着烧结温度的降低而减小,而密度却随着烧结温度的升高而增加。CoSb3纳米晶块体热电材料的制备机理是MA使粉末晶粒细化到纳米级,放电等离子烧结的快速、短时、低温和特殊烧结机理显著抑制了烧结时的晶粒长大。  相似文献   

4.
采用喷雾干燥-煅烧、还原工艺制备超细W-30Cu复合粉末,将粉末模压成形,在1340~1420℃液相烧结15~120min,研究其致密化行为及晶粒长大机制。结果表明:W-30Cu复合粉末在液相烧结早期发生了显著的致密化,1340℃烧结15 min致密度可达到90%以上;随烧结时间的延长致密度增加,1380℃烧结90 min相对密度达到99.1%。液相烧结过程中,W晶粒不断长大并逐渐球化,且其晶粒大小G与烧结时间t符合G3∝kt关系,服从液相烧结溶解-析出机制。烧结温度对W晶粒长大影响显著,当温度从1340℃上升到1420℃时,其晶粒长大动力学系数从1.61×10-2μm3/min增大到4.65×10-2μm3/min,液相的形成、颗粒重排、溶解-析出及W晶粒长大使细晶W-Cu获得近全致密。  相似文献   

5.
采用溶胶喷雾干燥-煅烧-氢热还原法制备了BET粒径为0.21μm的超细纯钨粉末,并利用球磨处理进一步活化粉末。研究了超细纯钨粉末形貌及其性能随球磨时间的变化特征,探索了未球磨、球磨5h及球磨10h3种超细纯钨粉末烧结致密工艺,此外还详细研究了纯钨烧结体组织形貌、晶粒尺寸及显微硬度等性能随烧结温度及球磨时间的变化规律。结果表明,球磨处理对超细纯钨粉末的烧结起到了极大的活化作用,由球磨10h粉末制成的压块在1900℃下烧结2h其致密度即可达97.3%,比传统微米级纯钨粉末制成的压块达到相同烧结致密度的温度降低了600℃以上。同时,球磨处理可以大幅降低钨粉的起始烧结温度和再结晶温度,获得组织更加均匀细小、力学性能(硬度)更加优良的钨烧结体。  相似文献   

6.
孙东平 《硬质合金》2009,26(3):141-147
系统研究晶粒长大抑制剂VC和Cr3C2对WC-8%Co超细晶硬质合金烧结过程中收缩率、相变温度和晶粒长大的影响。研究表明,WC-8%Co超细晶硬质合金的烧结收缩和致密化过程主要发生在固相烧结阶段,在液相出现前,合金的致密化程度已达到95%。晶粒长大抑制剂VC和Cr3C2的加入,显著降低了超细晶硬质合金烧结过程中液相出现的温度,且不同程度地阻碍了WC-8%Co超细晶硬质合金烧结过程中致密化的进程和速度。与未加入晶粒长大抑制剂的合金相比,其致密化的进程大约延迟80℃。  相似文献   

7.
采用高能球磨法制备出了平均颗粒尺寸为纳米级的超细Fe-C粉末。利用SEM、XRD等分析手段研究了球磨时间和转速对Fe-C超细晶/纳米晶粉末颗粒形貌、尺寸和合金化效果的影响。结果表明,Fe-C超细晶/纳米晶粉末的过程中,颗粒尺寸随球磨时间和转速的增加而得到有效细化。当球料比为20:1、转速350r/min、球磨70 h时,颗粒细化效果最好。将球磨后平均颗粒尺寸为纳米级的粉末进行SPS烧结,烧结温度700℃时,能实现烧结体完全致密,并可有效避免晶粒的长大,该烧结体材料抗压强度达2800MPa。  相似文献   

8.
本文采用亚微米WC粉和纳米Co粉、亚微米WC粉和高能球磨后具有纳米晶组织的微米级Co粉这两种具有不同粒径匹配的混合粉末作为原料粉末,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金。对不同原料粉末的SPS过程及烧结试样的显微组织和性能进行了系统的对比分析。实验结果表明,以两种混合粉末为原料均获得了平均晶粒尺寸在200nm以下的超细硬质合金材料,其中,采用亚微米WC粉和高能球磨的微米级Co粉利用SPS技术制备的材料相对密度达到98%以上,硬度达到HRA94.5,断裂韧性达到13.50MPa•m1/2,表明具有优良的综合性能。而采用亚微米WC粉和纳米Co粉利用SPS技术制备出的超细晶硬质合金的组织均匀性和性能较差。根据SPS技术的特殊烧结机理,对采用不同粒径匹配和结合状态的WC和Co混合粉末的SPS致密化机制进行了分析。  相似文献   

9.
在日益发展的亚微晶粒、有时甚至是纳米晶粒的先进材料的设计方面,结构特性的相互关系起着重要的作用:在这方面,分析电子显微镜法(AEM)提供了尤其适合硬质材料的综合鉴定方法:用来获得结晶信息的电子衍射法和高分辨率电镜法,以及尤其像能量过滤透射电镜法(EFTEM)和电子能量损失光谱法(EELS)等几乎能够进行原子分辨率分析的新方法:本文利用EFTEM和HREM方法着重研究了WC初始粉末和添加VC和Cr3C2的WC-Co烧结复合材料,以便在超细WC粉末的烧结过程中控制晶粒的长大。本文旨在查明粉末和烧结材料中添加元素的分布。  相似文献   

10.
采用物理化学方法制备超细高密度活化钨粉(W-0.1%Ni复合粉末,质量分数),研究球磨时间对活化钨粉形貌及其物理性能的影响,探讨球磨处理对该高密度活化钨粉烧结致密化行为的影响,并与超细纯钨粉末的烧结致密化行为进行对比。结果表明:微量活化元素镍的添加及球磨处理能明显加速钨粉的低温烧结收缩速率,显著促进钨粉的烧结致密化程度;球磨5 h后,活化钨粉在1 600℃下烧结即可达到近全致密化(致密度为99.4%),此外,镍元素的添加和球磨处理也能显著促进钨晶粒的长大。  相似文献   

11.
纳米晶W-Cu复合粉末烧结行为   总被引:5,自引:1,他引:5  
研究了机械合金化制备的纳米晶W-xCu(x=15,20,25)复合粉末的烧结行为.结果表明,纳米晶W-Cu复合粉末烧结致密化强烈地依赖于烧结温度与烧结时间.当烧结温度从1 150℃提高到1 200℃时,烧结30min后的烧结体相对密度由91%~94%增加到97%~98%;当烧结温度超过1 300℃时,烧结体发生快速致密化,5 min内相对密度即可达到98%左右.研究还发现,W-Cu合金中W晶粒尺寸也强烈地依赖于烧结温度,即烧结温度愈高,W晶粒长大愈显著.当压坯在1 200~1 250℃烧结30 min后,所得到的晶粒度约为300~500 nm,其中经1 200℃烧结时的晶粒尺寸约为300~350 nm.另外,Cu含量增加有利于烧结致密化,并降低W晶粒长大的趋势.  相似文献   

12.
采用亚微米WC粉和纳米Co粉以及亚微米WC粉和微米Co粉的混合粉末作为原料,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.对比研究表明,以两种混合粉末为原料均获得了平均晶粒尺寸约为200 nm的超细硬质合金材料.其中,采用微米Co粉制备的材料的相对密度达到98.0%以上,硬度HRA达到94.5,断裂韧性达到13.50 MPa·m1/2,具有优良的综合性能;而采用纳米Co粉制备的硬质合金的组织均匀性和性能较差.根据SPS技术的烧结机理,对混合粉末的致密化机制进行了分析.  相似文献   

13.
将原位合成WC-6Co复合粉末采用干袋式冷等静压压制成型(压制压力1×10~8 Pa、保压时间15 s),将压制好的坯料采用低压烧结炉烧结(烧结温度1360℃、烧结时间40 min、加压5 MPa、保温保压时间20 min),烧结制备超细YG6硬质合金,对合金的形貌、金相组织及物理力学性能进行分析。结果表明:原位合成WC-6Co复合粉末制备的超细YG6硬质合金,晶粒异常长大,WC平均晶粒尺寸为0.8μm,硬度HV_(30)为(21500±100) MPa,较传统超细YG6X硬度高。再将WC-6Co复合粉末采用滚动湿磨、压力式喷雾干燥、掺成型剂、挤压成型、低压烧结等工序制备超细YG6硬质合金,研究不同晶粒长大抑制剂配比、球磨时间、挤压压力、烧结温度对合金性能的影响。结果表明:添加0.3%VC、0.8%Cr_3C_2(质量分数),湿磨48 h,挤压压力24 MPa,烧结温度1340℃,制备的超细YG6硬质合金WC晶粒均匀,无异常长大的WC晶粒,WC平均晶粒度尺寸0.4μm,呈多边形,外形较圆。强度、硬度最高,抗弯强度TRS为(2250±20) MPa、硬度HV30为(22600±100) MPa。断口形貌为沿晶断裂,沿WC与WC晶界断裂或WC与Co晶界断裂。  相似文献   

14.
采用粉末冶金技术制备块体超细晶Mg-3Al-Zn合金。首先采用球磨Mg、Al、Zn混合粉末来制备纳米晶粉末,所得的粉末的平均晶粒尺寸为45nm。随后将球磨好的粉末封入铝包套内,分别在室温和633K温度下,在真空烧结炉内进行真空热压。然后将烧结后的样品在423K下挤压以进行进一步的致密化处理。结果表明:致密后的冷压样品的晶粒尺寸为180nm,而热压坯的晶粒尺寸为600nm,冷压样品的屈服强度达464MPa;超细晶镁合金的强化机制主要是细晶强化,这主要是由于HCP结构的材料晶粒尺寸对材料的影响更为明显。固化后冷压样品的最终密度为(1.777±0.006)g/cm3,而热压样品的最终密度为(1.800±0.006)g/cm3。  相似文献   

15.
《硬质合金》2015,(6):379-383
分别将两种工艺制备的超细碳化钨粉末制备成成分为WC+0.2%VC+0.6%Cr_3C_2+6.5%Co的混合料,测量两种混合料压坯在烧结过程中的收缩率的变化,并比较烧结后的四项性能和金相组织。研究结果表明,两种工艺制备的超细碳化钨粉末混合料表现出不同的烧结特性:1#碳化钨混合料收缩率为17.52%,收缩时间较短;2#碳化钨混合料的收缩率为18.25%,收缩时间较长。1#碳化钨混合料由于WC结晶完整、活性小,在湿磨过程中增氧较少,钴磁较高,烧结后合金的金相组织均匀,没有粗大晶粒;反之2#碳化钨混合料烧结后钴磁较低,合金的金相组织有粗大晶粒。  相似文献   

16.
采用溶胶-喷雾干燥及氢还原工艺制备超细/纳米W-20 Cu复合粉末:将粉末压制成形,在1 340~1 420℃烧结5~180 min,并研究其致密化行为及晶粒长大机制.结果表明:烧结温度对液相烧结致密化起主要作用,W-20Cu复合粉末在液相烧结早期发生了显著的致密化,在1 420℃烧结5 min时,致密度可达到89%以上;随烧结时间的延长,致密度增加,在1 420℃烧结90 min时,相对密度最高,达到99.1%.液相烧结时,W晶粒不断长大并逐渐球化,且其晶粒大小G与时间烧结t符合G3=G30+kt关系,服从溶解-析出机制.烧结温度对W晶粒长大影响显著,当温度从1 340℃上升到1 420℃时,其晶粒长大动力学系数从1.59×10-2 μm3/min增大到2.47×10-2 μm3/min,这说明液相的形成、颗粒重排、溶解-析出及W晶粒长大使得细晶W-Cu坯体获得近全致密.  相似文献   

17.
超细硬质合金中晶粒非均匀长大机理   总被引:2,自引:2,他引:0  
袁红梅 《硬质合金》2012,29(3):131-135,140
采用市售的粒度为0.8μm的WC粉末和粒度为1.6μm的Co粉制备了WC-10%Co超细硬质合金,通过金相显微镜﹑扫描电子显微镜观察了不同烧结温度下制备的试样WC晶粒形貌,对超细晶粒硬质合金非均匀长大现象及机理进行了研究。结果表明:粉末湿磨后的粗大颗粒在烧结过程中起晶核作用,是引起晶粒非均匀长大的关键因素。固相烧结时,烧结体中细小颗粒受到张力的作用发生旋转,当其取向与邻近的大颗粒取向一致时,形成共格界面,以粗大晶粒为核心以并合的方式非均匀长大;液相烧结时,细小晶粒溶解并优先地在大晶粒的某些低能量晶面如(0001)和(1010)面析出,引起晶粒异常长大。本研究中,当烧结温度达到1 410℃时,WC晶粒可异常长大为接近20μm的粗大晶粒。  相似文献   

18.
采用机械合金化和放电等离子烧结(SPS)技术制备了纳米TiC颗粒弥散增强超细晶W-TiC复合材料,对超细晶W-TiC复合材料的显微组织和室温力学性能进行了研究。研究表明,采用SPS工艺于1700℃下烧结1min可获得烧结颗粒结合良好,致密度高达约98.6%的超细晶W-TiC复合材料。通过添加纳米TiC,不仅能抑制W晶粒的长大,还能促进W的致密化。当TiC的加入量为0.7%时(质量分数,下同)可获得晶粒尺寸为0.5μm,抗弯强度和维氏硬度分别为1262MPa,6.45GPa的超细晶W-TiC复合材料。  相似文献   

19.
WC晶粒不断细化是硬质合金发展的一个重要特征。从硬质合金的纳米原料、纳米硬质合金、纳米材料助长或增强超粗晶硬质合金以及硬质合金的纳米涂层材料等4个方面论述了纳米材料在硬质合金中的应用,着重报道了中国在这些方面的优势。纳米粒径原料的制备是首要难题,1997年发明的“紫钨原位还原”技术利用传统工艺制备纳米、超细碳化钨粉末,碳化钨粉的粒径可小于20 nm。纳米硬质合金技术利用低压热等静压或热等静压,克服了烧结过程中 WC异常长大的难题,制备100~200 nm纳米硬质合金,抗弯强度在5000 MPa以上,使用性能优于亚微或超细晶硬质合金,已用于生产。利用“纳米颗粒溶解法”制备的超粗晶硬质合金晶粒度可达12μm;而含有纳米Co2 W4 C增强相的超粗晶硬质合金产品,使用寿命比普通合金产品提高了2~3倍。涂层材料纳米化,是硬质合金工具的一个发展方向,在耐磨性、硬度和抗裂纹扩展方面有明显优势,加工工件表面质量更好,工具使用寿命更长。  相似文献   

20.
采用放电等离子烧结(SPS)和超高压力通电烧结(RSUHP)2种快速烧结新方法,对纳米钨粉的致密化行为进行研究。结果表明,采用SPS工艺于1600℃下烧结可获得烧结颗粒结合良好,致密度达97.8%的试样,但晶粒粗化明显;而采用RSUHP方法获得的试样,烧结过程中晶粒几乎不长大,但致密度较低,颗粒间结合较差。将2种方法结合,充分利用SPS的清洁效应和RSUHP的晶粒细化效果,先用SPS在1400℃下预烧结,再由RSUHP二次烧结完成最终致密化,获得平均晶粒尺寸小于400nm,相对密度大于99%的超细晶粒的钨块体材料。烧结过程无需添加任何晶粒长大抑制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号