首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Composites have been used extensively in various engineering applications including automotive, aerospace, and building industries. Hybrid composites made from two or more different reinforcements show enhanced mechanical properties required for advanced engineering applications. Several issues in composites were resolved during the last few years through the development of new materials, new methods and models for hybrid joints. Many components in automobile are joined together either by permanent or temporary fastener such as rivets, welding joint and adhesively bonded joints. Increasing use of bonded structures is envisaged for reducing fastener count and riveted joints and there by drastically reducing assembly cost. Adhesive bonding has been applied successfully in many technologies. In this paper, scientific work on adhesively bonded composites and hybrid composites are reviewed and discussed. Several parameters such as surface treatment, joint configuration, material properties, geometric parameters, failure modes, etc. that affect the performance of adhesive bonded joints are discussed. Environmental factors like pre-bond moisture and temperature, method of adhesive application are also cited in detail. A specific case of adhesive joints in hybrid bonded-bolted joints is elaborated. As new applications are expanding in the field of composites joining and adhesive joints, it is imperative to use information on multiple adhesives and their behaviour in different environmental conditions to develop improved adhesive joint structure in mechanical applications.  相似文献   

2.
The aim of this review article is to examine solutions and challenges associated with adhesively bonded fibre reinforced polymer (FRP) pipe sections. FRP materials have been used in piping systems for more than 40 years. Higher specific mechanical properties and corrosion resistance of FRP makes it a potential candidate for replacing metallic piping structures. Another advantage of FRP structures is the large number of design variables available. Despite the advantages associated with FRP structures, their application is still limited, partly due to unsatisfactory methods for joining composite subcomponents and inadequate knowledge of failure mechanisms under different loading conditions. Adhesively bonded joints are attractive for many applications, since they offer integrated sealing and minimal part count and do not require pipe extremities with complex geometries such as threads or bell and spigot configurations. Normally, an adhesive joint results in more uniform stress distribution, undamaged fibre architecture, and smooth surface contours. In the present article, a comprehensive review of various joining techniques for FRP piping through adhesive bonding is presented and damage mechanisms for different loading conditions are examined.  相似文献   

3.
This contribution, carried out in the frame of the European Joint Technology Initiative ‘Clean Sky’, presents the results of a research program investigating the influence of fast curing on the quality of epoxy based paste adhesives. Today, the curing of paste adhesives is typically carried out following the supplier's recommendations. In order to reduce cycle time, save costs and energy resources, paste adhesives could be cured at higher temperature. To ensure a bonded joint quality with maximum mechanical performance, the limitation of this temperature increase is studied. This study shows the effects of the use of high temperatures in the curing process, which can lead to a degradation of the adhesive system due to the increase of void content, decreasing the mechanical performance in the paste adhesive as well as in the bonded joint. The goal of this research is to find fast and robust processing of paste adhesives and to develop a methodology to determine the maximum curing temperature possible. Different properties of the adhesive are investigated, including different thermal analysis techniques, optical and mechanical testing of the pure adhesive. Additionally, state of the art qualification of paste adhesives, single lap shear testing, is considered. In this study, a novel method to control the quality of the cured paste adhesives is defined based on the analysis of the pure cured paste adhesive, not influenced by the adherent quality, by measuring the void content and its effects on the bonded joint.  相似文献   

4.
The use of adhesively bonded joints is often limited by a lack of reliable models able to accurately predict their behaviour in industrial applications, in which the stress distribution is often complex. The mechanical behaviour of an adhesive in a bonded joint is often heavily dependent on its stress state (i.e., the tensile–shear combinations). Thus, a large experimental database is required to accurately represent the complex behaviour of an adhesive in a bonded joint. On the one hand, the initial yield surface (initial elastic limit) often has to be described taking into account the two stress invariants, hydrostatic stress and von Mises equivalent stress, and on the other hand the non-linear behaviour of the adhesive is also quite complex to model. However, the mechanical response of adhesively bonded joints often presents quite large stress concentrations; thus, the analysis of experimental tests is made particularly difficult. Obtaining reliable experimental results makes it possible to contribute to optimization of an adhesive in a bonded joint. This paper presents comparisons between results of different experimental tests (with bulk and bonded joints), some of them are designed to greatly limit the edge effects. Results are presented for two adhesives under proportional monotonic loadings. The two adhesives have very different behaviours (a ductile adhesive and a brittle adhesive) and two different surface preparations of aluminium substrates (a mechanical preparation and a chemical preparation recommended by the adhesive manufacturer) were studied.  相似文献   

5.
Adhesively bonded joints can support a longer fatigue life if compared to conventional joining techniques, provided that a set of requirements is fulfilled. One of the most important requirements is the mechanical preparation of the bonded joint surface, which improves the joint interface adhesion. The aim of this work is to investigate the influence of surface roughness of mild steel substrates on fatigue behavior in adhesive bonded plates. To accomplish this objective, three different surface treatments were used on A36 steel substrate specimens, namely sand blasting, grit blasting, and bristle blasting. Bonded plate specimens, using end-notched flexure format, with a thin adhesive epoxy layer were manufactured and tested, under mode II loading condition, in both static and dynamic tests. The results confirm the importance of surface treatment of the substrate on the fatigue life, confirming that adhesively bonded joints have significant performance differences when subjected to static and dynamic loadings.  相似文献   

6.
The metallic materials bonding using structural adhesives has become an increasingly used process, presenting advantages when compared to other fastening methods such as screws and rivets. The aim of this paper is the numerical evaluation of bonded joints with combined loading (traction and shear) using the finite element method, comparing the results obtained with the experiments performed at the same configurations. Considering adhesive joints with the same bonded area, but with different linear dimensions, the mechanical strength may be different, which characterizes the shape factor. In this way, the analyzes considered the bonded area shape factor in nine different configurations, being modified both the height and the width of the joint, considering two points of force application for each group. For the numerical simulation, the cohesive zone models (CZM) were used, which use the concepts of linear elastic fracture mechanics (LEFM). These models consider that one or multiple interfaces or regions of fracture may be artificially introduced into the structures, which is done through the separation-traction laws. For this purpose, DCB (double cantilever beam) and ENF (end notched flexure) tests were performed, measuring this way the essential cohesive properties to the numerical modeling, especially the critical energy release in I and II modes (normal and shear, respectively). The influence of some cohesive properties on the maximum load of the bonded joint was investigated. The good numerical and experimental concordance in different configurations studied confirms that the CZM provide consistent results with the bonded joint experiments for the presented conditions of adhesive thickness, surface treatment and load application point, not only in single lap joints, but also in combined loading joints, whose investigation was done in this work.  相似文献   

7.
Modern high performance adhesives are designed to offer an optimized balance of elasticity,toughness and plastic deformation capacity for the individual fields of application in e.g. the building and construction or transportation and vehicle industry. The long-term life prediction for adhesive joints based on laboratory tests requiring only days,weeks,or months is still a demanding challenge. Testing in practice is carried out with the intention of accelerating time dependent aging effects that may occur in a bonded joint during its service time. Initial strength values of bonded joints,such as shear or peel properties can often be obtained from the adhesive manufacturers or retrieved from literature. They are useful to compare different adhesives and to demonstrate the effect of parameters such as bond line thickness,overlap length or curing conditions,and,in some cases,the surface state. On the other hand only few data are available describing the mechanical long-term properties of adhesives related to creep and relaxation under static load conditions. Due to the nature of the polymer network of organic adhesives their viscoelastic-plastic deformation behavior is strongly time-and temperature dependent. The objective of this paper is to illustrate effective methods for investigating and predicting the creep and relaxation properties of adhesively bonded joints in the long-term region and for creating basic data for the design and engineering with adhesives.  相似文献   

8.
Circular hollow sections (CHS) represent a class of tubular structural steel elements that enjoy great popularity among architects, and civil engineers. Connections thereof, however, remain complicated, despite significant developments in welding procedures. The first part of this series of two articles summarises research on adhesive bonding as a substitute to traditional joining techniques for tubular sections on a large scale. For that purpose, suitable adhesives have been selected and fully characterised, their adequacy for the required strength in combination with steel verified on lap shear samples, and finally corresponding adhesively bonded tubular joints tested in quasi-static loading with diameters from 42 mm (joint capacities from 55 kN) up to 300 mm (joint capacities up to 1’800 kN). Additionally to various diameters and overlap lengths considered, effects resulting from different types of imperfections, as axial and angular misalignment, on joint strength were experimentally investigated. Presented results clearly indicate that adhesive bonding is a joining technique adapted for civil engineering applications. The second part of this series presents a design methodology for adhesively bonded tubular joints that fits into the conceptual framework of civil engineering practice.  相似文献   

9.
The use of adhesives to replace mechanical connectors and other joining methods has enjoyed rapid growth in recent years. There are a number of issues of concern in the design of joints bonded using electronically-conductive adhesives (ECAs). One of these is the cyclic fatigue behavior of conductive adhesive interconnects under different environmental conditions, in which fatigue failure might occur due either to mechanical or thermal stresses varying in a cyclic manner. This paper addresses the effect of elevated temperatures on the fatigue and failure behavior of ECAs. For this purpose, joints were prepared using stainless steel adherend specimens bonded with a commercial ECA, and tested using monotonic and cyclic loadings, at two elevated temperatures, namely 50°C and 90°C. When the temperature was increased to 90°C, close to the glass transition temperature of the adhesive, we observed consistently parallel fatigue curves at different load ratios (R = P min /P max) for joints, as in the case of 50°C test condition, along with significant reduction in fatigue lives. Joint failure mechanisms were also analyzed using optical techniques, and joint conductivity measurements.  相似文献   

10.
Nonlinear finite element analysis (FEA) was applied to the adhesively bonded Single Lap Joint (SLJ) in bending load. Two adhesives, one stiff and one flexible, with very different mechanical behaviors, and hard steel as adherend with four different thicknesses, were analyzed for the joint configuration. For comparison, experimental work was also undertaken. It was shown that adherend thickness played an important part in the joint performance; while the stiff adhesive gave stronger joint strength when using thick adherends, the opposite was the case for the flexible adhesive when using thin adherends. These results were related to the mechanical behaviors of the adhesives used. It was shown that the results from the FEA and the experimental works were in a good agreement.  相似文献   

11.
A variety of test techniques have been developed to test the performance of adhesives bonded in situ within joints. Most of these techniques measure strength, fracture toughness, or adhesive modulus of the bonded joint. Techniques to measure actual stress or strain values within a bonded joint are quite few in number. The Krieger gage1 is able to measure the average shear displacement along a 12.5 mm. gage length of a thick adherend joint. It has been used primarily to measure in situ shear moduli of adhesives. Brinson and his colleagues2 proposed bonding strain gages within adhesive joints to measure strains within the adhesive. Unfortunately, these gages are only sensitive to the lateral strains and not shear or peel strains. Because the lateral strains are dominated by the behavior of the adherends rather than the adhesive, the information which can be gained is incomplete.  相似文献   

12.
Some toughened adhesives used for structural joints are characterised by non-linear behaviour prior to failure that may significantly influence the entire joint response. The determination of appropriate and accurate material models for use in analysis and design phases covering both nonlinearities and final material rupture constitutes one of the main challenges for the utilisation of adhesives and for offering designers the same confidence level as that offered by other joining techniques.The present research proposes the utilisation of both elasto-plastic and continuum damage models as a combination that can fully reproduce the mechanical response of toughened adhesives in finite element (FE) analysis. In this context, the Drucker-Prager exponential model has demonstrated to provide accurate fits with the nonlinearities of these materials, allowing the real plastic behaviour of the adhesives to be adjusted in the computational models with a high degree of correlation. On the other hand, a continuum damage model has been proposed to simulate the final material failure process introducing a displacement-based damage parameter into the constitutive equation of the damaged material. The definition of the parameters associated with the mentioned models has been carried out through the execution of an experimental programme combining traction and torsion tests, described in the present paper as part of the study developed. The research is finally completed with an experimental and FE analysis of a specific bonded joint that allows the operation of the material model to be checked in a real application.  相似文献   

13.
FINITE ELEMENT ANALYSIS OF ADHESIVE JOINTS IN FOUR-POINT BENDING LOAD   总被引:1,自引:0,他引:1  
Nonlinear finite element analysis (FEA) was applied to the adhesively bonded Single Lap Joint (SLJ) in bending load. Two adhesives, one stiff and one flexible, with very different mechanical behaviors, and hard steel as adherend with four different thicknesses, were analyzed for the joint configuration. For comparison, experimental work was also undertaken. It was shown that adherend thickness played an important part in the joint performance; while the stiff adhesive gave stronger joint strength when using thick adherends, the opposite was the case for the flexible adhesive when using thin adherends. These results were related to the mechanical behaviors of the adhesives used. It was shown that the results from the FEA and the experimental works were in a good agreement.  相似文献   

14.
Abstract

Adhesive bonding is the best alternative to riveting in aircraft structures but the strength of the adhesive bonded joint is low and is limited by strength of adhesive. Strengthening of adhesive bonding is an important requirement. In this work, an attempt has been made to strengthen the adhesive bonding by mixing different quantities of brittle adhesive in the ductile adhesive and vice-versa. Two different adhesives, one brittle (AV138) and another ductile (Araldite-2015) adhesive have been considered. Initially single lap joint has been constructed between the CFRP and aluminium with individual adhesives, then the mixture of adhesives have been used in the bonded region in varied proportions. The X-ray radiography and ultrasonic testing have been performed to check the quality of bonding. Uniaxial tensile tests have been conducted on the lap joints along with Digital Image Correlations (DIC) to obtain the individual and mixed adhesive bond strength. The failure patterns have been identified using optical and scanning electron microscope. These studies indicate that strengthening of the adhesive bonding achieved by mixing of two adhesives and highest bond strength obtained when the mixture of AV138 and Araldite-2015 adhesives are used in equal proportions.  相似文献   

15.
Adhesively bonded structural joints have increasingly found applications in automotive primary structures, joining dissimilar lighter-weight materials. Low-modulus rubbery adhesives are attracting rising interest as an alternative to conventional rigid structural adhesives due to benefits such as the excellent impact resistance they provide. This paper is the first of two parts that investigate, both experimentally and numerically, the mechanical behaviour of a rubbery adhesive and the bonded joints to be used in a lightweight automobile structure. This part 1 paper characterises the fracture behaviour of the flexible adhesive layer with thick bondlines and presents a way to reliably determine the fracture mechanics parameters under a range of loading modes. Assessment of the various fracture tests indicated that DCB and SLB should provide mode I and mixed mode fracture energies but that the conventional ENF for mode II would not be practical for such compliant adhesive layers. Instead a cracked thick adherend shear specimen was developed and used. Reliable fracture energies were obtained from these specimens and a mixed mode fracture criterion developed for application in the part 2 paper.  相似文献   

16.
The emerging trends for joining of aircraft structural parts made up of different materials are essential for structural optimization. Adhesively bonded joints are widely used in the aircraft structural constructions for joining of the similar and dissimilar materials. The bond strength mainly depends on the type of adhesive and its properties. Dual adhesive bonded single lap joint concept is preferred where there is large difference in properties of the two dissimilar adherends and demanding environmental conditions. In this work, Araldite-2015 ductile and AV138 brittle adhesives have been used separately between the dissimilar adherends such as, CFRP and aluminium adherends. In the dual adhesive case, the ductile adhesive Araldite-2015 has been used at the ends of the overlap because of high shear and peel strength, whereas in the middle of the bonded region the brittle adhesive AV138 has been used at different dimensions. The bond strength and corresponding failure patterns have been evaluated. The Digital Image Correlation (DIC) method has been used to monitor the relative displacements between the dissimilar adherends. Finite element analysis (FEA) has been carried-out using ABAQUS software. The variation of peel and shear stresses along the single and dual adhesive bond length have been captured. Comparison of experimental and numerical studies have been carried-out and the results of numerical values are closely matching with the experimental values. From the studies it is found that, the use of dual adhesive helps in increasing the bond strength.  相似文献   

17.
One parameter that influences adhesively bonded joints performance is the adherend material and its effect should be taken into consideration in the design of adhesive joints. In this work, the effect of material on the mechanical behaviour of adhesive joints was investigated experimentally and numerically by single lap joints (SLJs) with different adherend materials (high strength steel, low strength steel and composite). The adhesives selected were two new modern tough structural adhesives used in the automotive industry. It was found that, for relatively short overlaps in SLJs bonded with structural modern tough adhesives, failure is dominated by adhesive global yielding and the influence of material on joint strength is not significant. For larger overlaps, the failure is not anymore due to global yielding and the effect of material becomes more important. Moreover, it was possible to evaluate which adhesive is more suited for each material.  相似文献   

18.
Adhesively bonding is a high-speed fastening technique which is suitable for joining advanced lightweight sheet materials that are dissimilar, coated and hard to weld. In this paper, the free torsional vibration characteristics of adhesively bonded single-lap joints are investigated in detail using finite element method. The effectiveness of finite element analysis technique used in the study is validated by experimental tests. The focus of the analysis is to reveal the influence on the torsional natural frequencies and mode shapes of these joints caused by variations in the material properties of adhesives. It is shown that the torsional natural frequencies and the torsional natural frequency ratios of the adhesively bonded single-lap joints increases significantly as the Young′s modulus of the adhesives increase, but only slight changes are encountered for variations of Poisson's ratio. The mode shapes analysis show that the adhesive stiffness has a significant effect on the torsional mode shapes. When the adhesive is relatively soft, the torsional mode shapes at the lap joint are slightly distorted. But when the adhesive is relatively very stiff, the torsional mode shapes at the lap joint are fairly smooth and there is a relatively higher local stiffening effect. The consequence of this is that higher stresses will be developed in the stiffer adhesive than in the softer adhesive.  相似文献   

19.
The aim of this work is to develop high‐performance adhesives to join carbon fiber reinforced composites (C/C) for use in aerospace applications; in order to guarantee sound mechanical strength, a low coefficient of thermal expansion, and ease of application on large components. Several different adhesive formulations, based on phenolic or cyanate‐ester resins (charged with the maximum experimentally feasible amount of carbon‐based fillers), are developed and tested. The measurements of the lap shear strength at room temperature of the C/C joined by means of one phenolic and one cyanate ester‐based resin demonstrates that these formulations are the most suitable for the given application. A complete characterization, by means of viscosimetry, dilatometry, and thermal gravimetric analysis, coupled with gas analysis by means of mass spectroscopy, confirms that the phenolic‐based formulation is the most promising joining material. A nano‐indenter is used to obtain its Young modulus and hardness, both inside the joint and as a bulk cured adhesive.  相似文献   

20.
A variety of test techniques have been developed to test the performance of adhesives bonded in situ within joints. Most of these techniques measure strength, fracture toughness, or adhesive modulus of the bonded joint. Techniques to measure actual stress or strain values within a bonded joint are quite few in number. The Krieger gage1 is able to measure the average shear displacement along a 12.5 mm. gage length of a thick adherend joint. It has been used primarily to measure in situ shear moduli of adhesives. Brinson and his colleagues2 proposed bonding strain gages within adhesive joints to measure strains within the adhesive. Unfortunately, these gages are only sensitive to the lateral strains and not shear or peel strains. Because the lateral strains are dominated by the behavior of the adherends rather than the adhesive, the information which can be gained is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号