首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前钙钛矿型红色荧光粉热稳定性较差的问题,以带隙和结构可调变的双钙钛矿型 Sr2Gd Nb O6为基质、Eu3+为激活离子,采用高温固相法成功制备双钙钛矿型 Sr2Gd1–xNb O6: x Eu3+(x=0.04~0.12)红色荧光粉,通过 X 射线衍射、紫外–可见分光光度和荧光光谱分析对目标产物进行表征。结果表明:合成的荧光粉具有单斜晶体结构,其空间群为 P21/c。结构分析表明:掺杂的铕以 Eu3+的化合态取代了基质 Sr2Gd Nb O6中的 Gd3+,形成了单一晶体结构的荧光粉。Sr2Gd1–xNb O6: x Eu3+荧光粉在蓝光λex=468 nm 和近紫外 λex=395 nm...  相似文献   

2.
以尿素和铁盐为原料,负载了MnO2,利用原位沉淀法与煅烧法制备g-C3N4/Fe3O4/MnO2复合材料。使用XRD、FT-IR、UV-Vis DRS对合成的部分光催化剂进行表征。结果表明:g-C3N4为类石墨的层状结构,Fe3O4和Mn O2通过分子间作用力与g-C3N4复合。在不同反应条件下的可见光诱导的光催化实验表明,当m(Mn)∶m(g-C3N4/Fe3O4)=1∶1时,g-C3N4/Fe3O4/MnO2复合材料具有出色的降解污染物的能力,其中光降解反应的优化条件为g-C3N  相似文献   

3.
采用传统的高温固相法合成出了硫元素掺杂的具有473 nm和525 nm双发射的UCr4C4型Rb Na3(Li12Si4O16–ySy):Eu2+窄带蓝光荧光粉,并在UCr4C4结构中实现零热猝灭发光性能,其发光积分强度在250℃下提升至室温的107%。Eu2+离子的格位占据分析及缺陷表征揭示了对应的发光调控和零热猝灭机理。采用阳离子取代策略(Ti4+部分取代Si4+)成功消除了荧光粉位于525 nm的肩带峰,将蓝光色纯度从61.1%提升至83.7%,使Rb Na3(Li12Si3Ti O16–ySy):Eu2+荧光粉有望成为应用于液晶显示背光的蓝色发光候选材料,为UCr  相似文献   

4.
以溶胶凝胶法制备了Ba2LaZrO5.5:Eu3+荧光粉,探讨溶液的pH值、焙烧温度和掺杂Eu3+的量对荧光粉的结构和发光的影响。证实了当pH=3、焙烧温度为800℃时Ba2LaZrO5.5:21%Eu3+荧光粉为立方体钙钛矿结构;在280nm激发下基质Ba2LaZrO5.5在468nm处有较强的蓝光发射,而Ba2LaZrO5.5:21%Eu3+荧光粉在612nm处有Eu3+的红光发射峰最强。  相似文献   

5.
为高效去除有机染料,分别以g-C3N4和TiO2为有机半导体和无机半导体原料,通过水热法合成一系列不同质量配比的g-C3N4/TiO2复合材料,利用正交实验L16(45)探究g-C3N4/TiO2复合材料处理罗丹明B模拟印染废水的最适宜工艺条件。结果表明,最适宜工艺条件为:光照时间为180 min、m(g-C3N4)∶m(TiO2)为20∶30、投加量为2.0 g/L、罗丹明B模拟印染废水质量浓度为20 mg/L、pH为6.50,此时罗丹明B去除率可达98.86%。而单一使用g-C3N4或TiO2对比处理罗丹明B模拟印染废水的去除率分别为52.27%和89.71%,说明TiO2掺杂g-C3N4后可以更好地发挥协同去除性...  相似文献   

6.
为了克服g-C3N4可见光的吸收范围窄和价带氧化能力弱的问题,采用固体盐辅助生长法制备K掺杂g-C3N4(CN-K)光催化剂。结果表明,此方法不仅能缩小g-C3N4的带隙,还能将价带的电位从1.62eV调到2.04eV,从而扩宽可见光的吸收范围并提高光催化氧化能力。XRD、FT-IR、XPS等方法对CN-K的表征结果,证明成功制备了CN-K。CN-K的ESR的结果,证明·O2-和·OH的存在。之后,本文通过改变固体盐的质量,探究其光催化降解四环素的性能,其中CN-K(10)光催化降解四环素的效率最高,40min的光催化降解四环素效率为88%,是g-C3N4(17%)的5.2倍,光催化活性顺序为g-C3N4相似文献   

7.
通过负载法成功制备了g-C3N4/BiVO4异质结,采用XRD、SEM、BET、UV-Vis DRS、Mott Schottky、SPV等技术对样品的结构与性质进行分析,以光催化降解RhB和光催化还原CO2评价其光催化活性。结果表明,g-C3N4和BiVO4能带结构匹配,能够组成“Z”型异质结,并有效提高光生载流子的分离效率,同时保留g-C3N4导带电子较强的还原性和BiVO4价带空穴较强的氧化性,最终提高光催化活性,其中当g-C3N4的负载量为3%时,样品展现了最佳的光催化活性,在光催化降解RhB实验中,经过180min光照后,降解率达到95.3%,反应速率常数达到0.0166min-1;而在光催化还原CO2的实验中,经过4h光照后,CO和O2的产量达到70....  相似文献   

8.
段毅  邹烨  周书葵 《现代化工》2023,(12):142-148
以三聚氰胺、三聚氰酸和硝酸钴为原料,采用高温煅烧法制备出复合型催化剂(Co/g-C3N4),用其活化过一硫酸盐(PMS)降解环丙沙星(CIP)。考察了各因素对Co/g-C3N4活化PMS去除CIP的影响。结果表明,Co/g-C3N4质量浓度为0.5 g/L、PMS浓度为2 mmol/L、溶液初始pH为7、CIP初始质量浓度为5 mg/L、温度为30℃时,CIP在45 min内的去除率可达99.5%;催化剂在5次循环利用后对CIP的去除率仍有83.3%,表明Co/g-C3N4的可重复利用性和稳定性良好。自由基淬灭试验表明,Co/g-C3N4活化PMS去除CIP的机制包括自由基途径(SO4·-、·OH)和非自由基途径(1O2、O2·-),其中主...  相似文献   

9.
为了提高TiO2的光催化氧化脱硫(PODS)活性,利用负载和复合的协同作用,将TiO2与g-C3N4复合,并负载于双介孔二氧化硅(BMMS)上,制备了TiO2–g-C3N4/BMMS。以含二苯并噻吩(DBT)的十二烷溶液为模拟油,评价了催化剂的催化性能;优化了反应条件并提出了催化反应机理。结果表明:TiO2–g-C3N4/BMMS具有明显的双介孔结构,TiO2与g-C3N4已实现复合并负载于BMMS上,TiO2–g-C3N4活性组分在载体上分散良好,与单一TiO2相比对光的吸收能力增强,催化活性有明显提高,优化后的反应条件为,催化剂用量3%(质量分数),O/S摩尔比为10:1,萃取剂与模拟油体积比为1:1,此时脱硫率可达96.6%,且重复使用8次后脱硫率仍保持85%以上,PODS过程中的主要活性中间物种是·O2和h+。  相似文献   

10.
郑锐  李春虎  张程真  侯立威 《工业催化》2018,26(11):122-126
采用XRD和FT-IR对制备的g-C3N4光催化剂进行表征,使用气固光催化反应器考察60 ℃条件下g-C3N4/泡沫陶瓷的SO2光催化氧化性能,包括吸附性能和光催化脱硫活性。结果表明,负载g-C3N4光催化剂的泡沫陶瓷,对SO2的吸附容量性能大大提高;g-C3N4/泡沫陶瓷在H2O和O2同时存在时的光催化脱硫活性最好,脱硫率86.9%。  相似文献   

11.
将ZIF-67与g-C3N4按一定质量比复合制备Co3O4/g-C3N4复合光催化材料,并以此来提高Co3O4的光催化性能。利用XRD、SEM和FT-IR对复合材料结构、性能和元素分布进行表征。结果表明,当盐酸四环素(TC-HCl)质量浓度为3 mg/L、质量分数为3%的Co3O4/g-C3N4投加量为15 mg且pH为中性时,催化剂光催化性能最佳,90 min降解盐酸四环素效率达到了91.1%。3%Co3O4/g-C3N4复合光催化剂重复使用5次后,其降解率仍可达到88.5%,表明该材料具有一定的光催化稳定性和重复利用性。体系自由基捕获实验证明,产生了·O-2、h+、·OH...  相似文献   

12.
秦于伟  王南  王松  薛祥  林雪  王宝辉 《当代化工》2024,(3):611-614+644
采用原位合成法在TiO2纳米管上沉积g-C3N4对材料进行改性,通过改变尿素的质量浓度制备了一系列不同负载量的g-C3N4/TiO2复合材料(0.2、0.3、0.4、0.5、0.6 g·L-1 g-C3N4/TiO2 NTs),然后在可见光条件下考察了g-C3N4/TiO2复合材料光催化降解硝基苯的性能,并对材料做了相关的表征分析和自由基清除实验。结果表明:将g-C3N4负载到TiO2纳米管上可以显著提高光催化活性,可能是由于g-C3N4和TiO2之间形成了异质结,延长了载流子的寿命,阻碍了电子与空穴的复合,从而提升了复合材料的光催化活性。  相似文献   

13.
由于化石燃料大量消耗导致的能源危机和环境问题日趋严重,将氢能作为一种替代传统能源的绿色能源成为当下的研究热点。用以光催化分解水产氢的石墨相氮化碳(g-C3N4)基材料不仅制氢规模大,而且投入成本少,近年已成为产氢的最优方案之一。但通过对g-C3N4改性,可有效提高其产氢效率,并解决g-C3N4材料固有的可见光响应范围窄、电子—空穴复合严重、光催化产氢效率低等问题。本文回顾了近年来各种基于g-C3N4基材料光催化分解水产氢的方法和手段,重点介绍了g-C3N4光解水产氢的机理、g-C3N4的掺杂改性,并总结了影响g-C3N4基材料光催化分解水产氢效率的因素。最后,讨论了g-C3N4基材料光催化分解水产氢的一些关键限制条件和未来前景。  相似文献   

14.
采用stober溶胶-凝胶法制备以SiO2为基质,Eu3+为激活剂的红色荧光粉。研究了退火温度,稀土Eu3+掺杂量对荧光粉发光性能的影响。研究表明:制备出了分散度高,形貌好的球形SiO2粒子,粒径分布单一,几乎均在613 nm左右,SiO2粒子为非晶态,稀土离子的掺杂并未改变SiO2的结构。稀土离子掺杂量与退火温度仅影响发射峰的强度,并未影响发射峰的位置。SiO2:Eu3+最佳退火温度为600℃、最佳掺杂量为6 mol%,位于橙红光区。  相似文献   

15.
以三聚氰胺、氯化铁、氯化钴为原料,利用热缩聚合成法制备不同比例的Co/Ni共掺杂的g-C3N4光催化剂,并在可见光条件下测量其光解水产氢性能。结果表明,5%Co/Ni-g-C3N4催化剂催化效率最高,产氢量为20.33μmol/h,是单相g-C3N4的4.9倍。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)、瞬态光电流分析(I-t)等方法对不同样品进行表征。结果发现,Co/Ni共掺杂并未改变g-C3N4半导体的骨架结构,但极大地增加了催化剂表面光生电子-空穴的分离效率,致使光催化产氢效率大幅增加。  相似文献   

16.
采用微波加热法制备了SrWO4:Sm3+红色荧光粉,并通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)及荧光光谱仪(PL)对产物的物相结构、表现形貌及发光性能进行表征。结果表明:Sm3+的掺杂均没有改变SrWO4的晶体结构并成功掺入,所制备的SrWO4:Sm3+荧光粉颗粒为微米级,该荧光粉能够被403 nm激发,在红光区域有较好的发射,SrWO4:0.07Sm3+荧光粉性能最好,色坐标位于(0.600 9,0.394 7),荧光粉均可发射出纯净度高、饱和度较高的红光。微波快速条件下制备得到的SrWO4:Sm3+有望作为红色荧光粉应用于白光LED中。  相似文献   

17.
长余辉材料应用广泛,但种类繁多、发光机理难以被普遍阐释。针对发光–余辉性能好的Sr2MgSi2O7:Eu2+,Dy3+硅酸盐长余辉材料,构建Sr2MgSi2O7基质、Eu掺杂及(Eu,Dy)共掺杂Sr2MgSi2O7的分子模型,进行第一性原理计算。从电子结构角度解译电子跃迁俘获路径,并阐释Sr2MgSi2O7:Eu2+,Dy3+的持续发光机理。结果表明:Eu、Dy离子的掺入使Sr2MgSi2O7由间接带隙半导体转变为直接带隙半导体;Dy 5d态主要位于Fermi能级与Eu 5d态之间,并与Eu 5d态存在能量重叠,这证实了Dy3+作为电子陷阱的合理性。S...  相似文献   

18.
本文通过高温煅烧乙酰胺和尿素混合物,成功制备了在可见光下具有优异光催化降解性能的C掺杂g-C3N4材料,然后将C掺杂g-C3N4和PVDF共混,通过静电纺丝制备了具有优异光催化性能的C掺杂g-C3N4/PVDF复合纳米纤维膜。结果表明,当乙酰胺与尿素的质量比为5%时,所制备的C掺杂g-C3N4粉末的光催化性能较好,乙酰胺的掺杂改性既改变了g-C3N4形貌结构,又改善g-C3N4的禁带宽度,从而进一步有效提高了C掺杂g-C3N4材料的光催化活性;当粉末掺杂比为12%时,所制备的PVDF纳米纤维复合膜光催化降解罗丹明B的效率达89.12%;复合纤维膜经过4个循环的光催化降解实验后,对罗丹明B的光催化降解效率保持在80%以上,解决了传统光催化剂难以回收和催化剂易被包覆而失效的问题。  相似文献   

19.
用高温固相反应法合成了Sr3Y1.98(BO3)4:0.02Sm3+橙红光荧光粉,研究了样的晶体结构性质和发光性质。荧光粉的激发光谱由宽带峰和锐峰组成。其中宽带峰位于紫外区,来自O2-→Sm3+的电荷迁移带跃迁;锐峰位于近紫外和可见光区,来自Sm3+的f-f跃迁吸收。在403 nm的光激发下,Sr3Y1.98(BO3)4:0.02Sm3+的发射光谱展示出两个较弱的发射峰(4G5/26H5/2,566 nm;4G5/26H9/2,649 nm)和一个较强的发射峰(4G5/26...  相似文献   

20.
通过溶液燃烧法成功合成了一系列非活性K+掺杂的尖晶石型(KxCoCrFeMnNi)(3/(5+x))O4(x=0,0.5,1,1.5)高熵氧化物锂离子电池负极材料,系统研究了K+掺杂对结构和储锂性能的影响。结果表明:随着K+掺杂量的增加,均可制备出具有单一尖晶石结构的纳米晶粉体材料,其中等摩尔K+掺杂的(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4高熵氧化物负极材料具有最高的比容量、优异的循环稳定性和倍率性能。(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号