首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion of steel in concrete is one of the major causes of premature deterioration of reinforced concrete structures, leading to structural failure. To prevent the failure of concrete structures because of corrosion, impermeable and high performance concretes should be produced various mineral admixtures. In this study, plain and reinforced concrete members are produced with mineral admixtures replacing cement. Ground granulated blast-furnace slag (GGBFS) has replaced cement as mineral admixture at the ratios of 0%, 25% and 50%. The related tests have been conducted at the ages of 28 and 90, after exposing these produced plain and reinforced concrete members to two different curing conditions. The unit weight, ultrasonic pulse velocity, splitting tensile and compressive strength tests are conducted on plain concrete members. Half-cell potential and accelerated corrosion tests are also conducted on reinforced concrete members. According to the test results, it is concluded that the curing age and type are important and corrosion resistant concrete can be produced by using GGBFS mineral admixture at the ratio of 25%.  相似文献   

2.
The fracture parameters and fatigue performances of carbon fiber reinforced concrete is investigated by three point bending tests. In comparison with the results of quasi-static tests where no pre-cyclic loading is applied, the influence of pre-cyclic loading history on fracture parameters was researched by using compliance calibration. The test results show that the fracture parameters of carbon fiber reinforced concrete and plain concrete will be reduced if the pre-cyclic loading stress levels are higher than a certain threshold, and this threshold value for carbon fiber reinforced concrete is higher than that of plain concrete. The critical effective crack length for carbon fiber reinforced concrete is significantly larger than that of plain concrete and independent of the pre-cyclic loading history and fatigue life. Carbon fiber reinforced concrete has a considerable beneficial effect on the behaviour of concrete subjected to flexure fatigue loading.  相似文献   

3.
The paper presents a study on the fatigue strength of steel fibre reinforced concrete (SFRC). An experimental programme was conducted to obtain the fatigue-lives of SFRC at various stress levels and stress ratios. Sixty seven SFRC beam specimens of size 500×100×100 mm were tested under four-point flexural fatigue loading. Fifty four static flexural tests were also conducted to determine the static flexural strength of SFRC prior to fatigue testing. The specimens incorporated 1.5% volume fraction of corrugated steel fibres of size 0.6×2.0×30 mm. Concept of equivalent fatigue-life, reported for plain concrete in literature, is applied to SFRC to incorporate the effects of stress level S, stress ratio R and survival probability LR into the fatigue equation. The results indicate that the statistical distribution of equivalent fatigue-life of SFRC is in agreement with the two-parameter Weibull distribution. The coefficients of the fatigue equation have been determined corresponding to different survival probabilities so as to predict the flexural fatigue strength of SFRC for the desired level of survival probability.  相似文献   

4.
The results of an experimental investigation on the fatigue characteristics and residual strength of steel fiber reinforced concrete (SFRC) are reported. The testing program included flexural specimens as well as split-cylinders and cubes reinforced with two fiber types at a low volume content. One of the fibers was of the deformed slit-sheet type available at aspect ratios of 45 and 60. It is shown that SFRC has a better fatigue response than plain concrete and that the deformed slit-sheet fiber has an effect almost identical to hooked-end fiber of similar dimensions. There is no increase in residual strength measured by split-tension when specimens are subjected to fatigue stress above the endurance limit. Fatigue characteristics of SFRC from this testing program as well as previous works can be interpreted as a function of the fiber factor (i.e. a parameter accounting for volume fraction, aspect ratio and fiber type) to provide design charts. More experimental work is needed to provide an acceptable database for fatigue design of SFRC.  相似文献   

5.
Concrete is now universally recognized a construction material vital and essential for the regeneration and rehabilitation of the infrastructure of a country. The last few decades have now shown that high strength concrete, with a compressive strength of 100–120 MPa can be readily designed and manufactured. There have also been several advances made in the development of fiber reinforced concrete to control cracking and crack propagation in plain concrete, and to increase the overall ductility of the material. However, there are now many types of fibers with different material and geometric properties, and the exact fracture behavior of fiber reinforced concrete materials is not clearly understood. The overall aim of this paper is to establish the fracture properties and fracture behavior of concrete containing two widely used types of fibers, namely, steel (high modulus) and polypropylene (low modulus). The experimental investigation consisted of tests on cubes and notched prismatic specimens made from plain concrete and fiber concrete with 1% and 2% of steel or polypropylene fibers. The cube tests and the three point bending tests on notched specimens were carried out according to RILEM specifications, and extensive data on their compressive and flexural tensile behavior and fracture energy were recorded and analyzed. The results obtained from the tests are critically assessed, and it is shown that fibers contribute immensely to the structural integrity and structural stability of concrete elements and thereby improve their durable service life.  相似文献   

6.
Concrete is a composite material composed of water, sand, coarse granular material called aggregate and cement that fills the space among the aggregate particles and glues them together. Conventional building structures are made up of steel skeleton with concrete impregnation. These are very heavy weight structures with steel vulnerable to corrosion. The conventional concrete structures tend to undergo large deformations in the event of a strong earthquake. Mechanical simulation of various textile structural concretes is carried out successfully for their ductility behaviour. 3D woven reinforced concretes display superior ductile character showing ray of hope to develop seismic resistant building. Simulation of three 3D woven fabrics and their composites was carried to predict ductility and strengths of fabric reinforced concrete structures. Maximum deformation was observed for beam reinforced with orthogonal interlock fabric under the same load and minimum deformation was observed for plain concrete. Maximum equivalent stress was observed to be highest for plain concrete followed by beam reinforced with angle interlock fabric followed by orthogonal fabric and warp interlock fabric under similar loading conditions. From the results it was clear that 3D fabric reinforced structures are more ductile than the traditional steel reinforced structures. Hence 3D fabric reinforced concrete structures are much better in strength and ductility as compared to conventional construction materials. Among the three 3D fabric, orthogonal fabric reinforced composites are most ductile and are also less stiff. They can deform more than the other two fabric composites. Hence, orthogonal fabric reinforced composites can undergo higher deformations without collapsing. These composites can be more elastic under earthquake shaking.  相似文献   

7.
This paper presents the results of a study of steel-fiber-reinforced concrete (SFRC) in flexural fatigue. An experimental technique was developed to determine the moment at which cracking is initiated, thus allowing a quantification of the survival life beyond cracking. Basically, the experimental program consisted of 8 series of flexural fatigue tests (under third-point loading) performed at three different levels of stress (70%, 75% and 85% of first-crack strength). Six SFRC mixtures (at a fiber dosage of 40 kg/m3) were prepared and tested. The variables were the water/cement ratio (0.45 and 0.35), and the fiber geometry (hooked, anchored, and crimped fibers). Two similar plain concretes (w/c=0.45 and 0.35) were used as reference mixtures. The fatigue response of the SFRC mixtures was found to be quite variable, both before and after cracking. The survival life appeared to be significant, especially at the lower level of stress investigated, but the overall variability prevented the identification of specific trends concerning the influence of the water/cement ratio and the type of fibers. The variability of the number of fibers found in the bottom half of the specimens at the critical section could not explain the variability of the survival life. It was concluded that the orientation of the fibers also had an influence in this respect, and that a fiber content higher than that utilized, or the use of larger test specimens, was probably required to limit this variability.  相似文献   

8.
Steel fibers are known to improve shear behavior. The Design Codes (Eurocode 2 (EC2), Spanish EHE-08, Model Code 2010 and RILEM approach) have developed formulas to calculate the fiber contribution to shear, mainly focused on standard FRCs, i.e. medium strength concretes with a low content of normal strength steel fibers. However, in real applications other combinations are possible, such as high or medium strength concretes with high strength steel fibers of different lengths and geometry. An experimental program consisting of 12 self-compacting fiber reinforced concrete (SCFRC) I-type beams was carried out. All the beams had the same geometry and fiber content (50 kg/m3), and they were made with two different concrete compressive strength values and five different types of steel fibers and were tested for shear. The main conclusions reached were that the type of fiber substantially affects shear behavior, even when the Design Code formulas indicate similar contributions. The combination of high strength concrete matrixes with low strength fibers does not seem to be efficient. Also, the use of high residual flexural tensile strength values (e.g. fR3 or fR4) does not appear to be the most accurate reference value to calculate the beam shear strength in these cases. The present Design Codes consider standard FRCs, but their formulas should be revised for concretes with fibers of different strengths, slenderness and geometry, since these properties substantially affect shear behavior.  相似文献   

9.
In this paper, the predictions of non linear finite element analysis of flexural behavior of reinforced concrete beams are compared with available experimental data. The elastic-plastic concrete model already used for reinforced normal strength concrete beams is able to predict correctly the full flexural behavior of beams made with high strength concrete. However, the shear retention factor must be notably modified when the nature of concrete changes from normal strength concrete to high strength concrete. The value of shear retention factor must decrease from 0.4 with normal strength concretes to 0.1 with high strength concretes.  相似文献   

10.
《Composites Part A》1999,30(3):299-304
Monotonic and fatigue tests were carried out in four-point bending on a glass fabric/epoxy composite, using two different stress ratios. Ultimate failure both in monotonic tests and in fatigue was precipitated by microbuckling phenomena happening at the compression side of the specimens. The experimental results were evaluated adopting a fatigue model statistically implemented, based on the hypothesis of a two-parameter Weibull distribution of the monotonic strength, previously assessed for random glass fibre reinforced plastics failed in tension. The fatigue model was able to account for the effect of the stress ratio on the fatigue life, accurately predicting the classical S–N curve. By the model, the virgin strength for each specimen failed in fatigue was evaluated, and the distributions of the measured and calculated monotonic strength were compared. Some discrepancies between the two distributions, resulting in poor agreement in the tail portions of the curves, were noted. It is shown that the inconsistencies found are probably attributable to the inadequancy of a two-parameter Weibull curve to describe the actual material trend. Better results were obtained by using a three-parameter Weibull distribution.  相似文献   

11.
In this study, the bond strength between steel and concrete reinforced with multi-walled carbon nanotubes (CNTs) is analysed. To this end, pull-out tests were carried out for concretes with incorporation of 0.05–0.1% of different types of functionalized and unfunctionalized CNTs with distinct aspect ratios and dispersion techniques. The results showed that CNTs can improve both compressive strength and steel–concrete bond up to 21% and 14% respectively, as compared to plain concrete. The highest compressive strength was found in concrete with higher amounts of lower aspect ratio CNTs, while the best steel–concrete bond performance was attained for concrete with lower amounts of higher aspect ratio CNTs. CNTs were effective to retain the crack propagation, increasing the bonding stiffness and reducing the deformation of concrete consoles between steel ribs. CNTs of higher aspect ratio could better contribute with their microcrack bridging effect. Microscopic analysis confirmed the adequate dispersion and microcrack bridging provided by CNTs, delaying the macrocrack propagation within the aggregate–paste and steel–concrete interfacial transition zones.  相似文献   

12.
This paper presents the recent experimental results aimed at disclosing the loading frequency effect on the fatigue behavior of a plain concrete and two types of fiber-reinforced concrete, using polypropylene and steel fibers. Compressive fatigue tests were conducted on 123 cubic specimens (100 mm in edge length). Four different loading frequencies, 4 Hz, 1 Hz, 1/4 Hz and 1/16 Hz, were employed. The maximum stress applied on the specimen was 85% of its compressive strength and the stress ratio was kept constant as 0.3. The results show that the loading frequency effect on the fatigue behavior of the plain concrete is pronounced. The fatigue life (the number of cycles to failure) at lower frequencies is less than that at higher frequencies. However, the fibers do improve the fatigue behavior significantly under low loading frequencies. Such trend can be attributed to the effectiveness of the fibers in bridging cracks, and thus inhibiting the crack extension under cyclic loads.  相似文献   

13.
This paper presents the results of an experimental investigation on the steel reinforcement corrosion, electrical resistivity, and compressive strength of concretes. Concretes having two different water–cement ratios (0.65 and 0.45) and two different cement contents (300 and 400 kg/m3) were produced by using a plain and four different blended portland cements. Concrete specimens were subjected to three different curing procedures (uncontrolled, controlled, and wet curing). The effect of using plain or blended cements on the resistance of concrete against damage caused by corrosion of the embedded reinforcement has been investigated using an accelerated impressed voltage setup. The resistivity of the cover concrete has been measured non-destructively by placing electrodes on concrete surface. The compressive strength, electrical resistivity, and corrosion resistance of the concretes were determined at different ages up to 180 days. The results of the tests indicated that the wet curing was essential to achieve higher strength and durability characteristics for both plain and especially blended cement concretes. The concretes, which received inadequate (uncontrolled) curing, exhibited poor performance in terms of strength and corrosion resistance.  相似文献   

14.
Calculating the fatigue strength of concrete under the cyclic load of vehicles when designing bridges is an issue which is receiving more and more attention from many engineers and researchers. Based on this fact, fatigue tests of plain concrete under constant-amplitude and stepping-amplitude cyclic loads were conducted. The mechanism which damages plain concrete specimens under high frequency fatigue loads was analysed and a non-linear accumulative fatigue formula that causes the damage was proposed. A fatigue equation PSN that considers the failure probability p′ was given. The results of this research are a good preparation for further studies into high frequency fatigue tests of concrete cylinders reinforced with carbon fibre.  相似文献   

15.
杨娟  朋改非 《复合材料学报》2016,33(12):2931-2940
采用普通原材料制备56 d龄期抗压强度为140~160 MPa的空白组超高性能混凝土、钢纤维超高性能混凝土及混杂纤维超高性能混凝土,测定其遭受高温作用后的残余抗压强度和劈裂抗拉强度,并对100%含湿量的混凝土试块进行高温爆裂试验。此外,测定大小2种加热速率对超高性能混凝土高温爆裂行为的影响。结果表明:所配制混凝土的残余抗压强度均随着目标温度的升高呈现先增大再降低的趋势,800℃高温后的残余抗压强度约为常温强度的30%。钢纤维与混杂纤维混凝土的残余劈裂抗拉强度亦呈现先升高再降低的趋势,800℃高温后的残余劈裂抗拉强度分别为常温强度的15.1%和35.4%。空白组混凝土的残余劈裂抗拉强度随着目标温度的升高而单调下降,800℃高温后的强度值约为常温强度的20.3%。7.5℃/min加热速率下,100%含湿量的3种混凝土试块均发生了严重高温爆裂,单掺钢纤维可以改善超高性能混凝土的高温爆裂,但不能避免爆裂的发生,而混杂纤维对超高性能混凝土高温爆裂的改善效果并未显著优于钢纤维。2.5℃/min加热速率下,混杂纤维可避免部分超高性能混凝土试块发生爆裂。   相似文献   

16.
炭纤维增强混凝土能用来感知温度,其因在于短炭纤维的P-型传导性引起的塞贝克(Seebeck)效应所致.通过测量添加炭纤维或矿质掺和物(飞灰、硅土粉)前后六种波特兰水泥基混凝土的热电功率,研究了炭纤维增强轻质混凝土热敏的能力及其矿质掺合物对Seebeck效应的影响.结果表明: 炭纤维增强轻质混凝土具有类似于炭纤维增强标准混凝土的Seebeck效应,只是Seebeck系数因掺合了矿粉而减低.掺有矿粉的炭纤维增强轻质混凝土可用作建筑物的热传感器.  相似文献   

17.
提出了一种使用水泥基压电陶瓷传感器测试混凝土轴压短柱应力的新方法。将压电传感器埋入混凝土矩形短柱核心区,测试了纤维增强复合材料约束前后混凝土短柱的轴向动态疲劳载荷,建立了传感器输出信号与混凝土短柱核心区应力之间的数值模型,并将理论计算应力值与由模型推导出的应力值进行对比。结果表明:模型推导应力值与理论计算应力值基本吻合,验证了使用压电传感器测试动态载荷作用下混凝土短柱应力这一新方法的可行性。  相似文献   

18.
The objective of this study is to investigate the differences between the tensile stress-crack opening relationships of the small size notched beam and the real size beam which were made of two ultra-high performance fiber reinforced concretes (UHPFRCs) having different volume fractions and lengths of fibers. The stress-crack opening relationships of two UHPFRCs were first obtained from the inverse analysis for the small size notched beam tests. In addition, the three types of real size beams were manufactured for each mix: (1) plain beam, (2) beam with tensile reinforcement, and (3) beam with both tensile and compressive reinforcements. The flexural tests of the plain and reinforced beams were conducted up to a failure state. The load-deflection curves of the plain and reinforced UHPFRC beams calculated based on the tensile stress-crack opening relationship of the notched beams did not give an accurate prediction on the measured load-deflection curves of the real size beams. The tensile stress-crack relationships accurately fitting the measured load-deflection curves were additionally found, and the difference in the tensile stress-crack opening relationships of the small size notched beams and the real size beams was analyzed in this study.  相似文献   

19.
This study deals with the determination of uniaxial tensile strength of concretes reinforced withA-fibres (slag-basalt fibres) and glass-fibres at the age of 0,3 and 6 hours. For the determination of the tensile strength of fibre-reinforced concrete in its early age of setting and hardening a method was applied which was developped for the investigation of plain concretes. Tests were performed to obtain the relationships between the fibre volume fractions and uniaxial tensile strengths of concretes at different, ages. The kinetics of strength increase has been studied. It is shown that the kinetics of strength increase is to a high degree dependent on the kind of fibre reinforcement.  相似文献   

20.
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber ? reinforced ceramic ? matrix composites (CMCs) under multiple fatigue loading. The Budiansky ? Hutchinson ? Evans shear ? lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two ? parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号