首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents the fatigue test results of rectangular cross-section specimens made of 10HNAP (S355J2G1W) steel. The specimen height to width ratio was 1.5. The tests under bending with torsion were performed for the following ratios of bending to torsional moments MaB/MaT = 0.47, 0.94, 1.87 and the loading frequency 26.5 Hz. Nominal stresses were chosen for the equivalent stress according to the Huber-Mises hypothesis equal to 360 MPa. The tests were performed in the high cycle fatigue regime for the stress ratio R = −1 and phase shift between bending and torsion loading equal to ϕ = 0 and 90°. Crack initiation and propagation phases were observed on the specimen surface using the optical microscope (magnification 20×) with an integrated digital camera. The test results for the fatigue crack growth rate versus the stress intensity factor range for mode I and mode III have been described with the Paris equation.  相似文献   

2.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

3.
In this work, we are interested in the bending fatigue resistance of the nitrided 42CrMo4 steel improvement by shot-peening. The micro-structure, the micro-hardness, the residual stresses distribution and the crack resistance of the hardened steel are determined. The gains, expressed in term of endurance limit, brought by these treatments are established by three-points bending fatigue tests and discussed in relation to the residual stresses evolution under the cyclic loading conditions. The fatigue fracture resistance after a combined process of surface hardening including shot peening followed by nitriding is analyzed by methods of fracture mechanisms. This reveals that the gain provided by the nitriding is about 8% against 35% for the nitriding with shot-peening. This is primarily allotted to a high level of compressive residual stresses for nitrided + shot-peened state compared to the nitrided state. The fast relaxation of these stresses in the low cycle fatigue domain is at the origin of the fatigue fracture at surface, which leads to a lower fatigue fracture resistance compared to the untreated state. Based on multiaxial HCF criterion of Sines and taking into account the different surface properties, a local predictive approach was developed.  相似文献   

4.
Two SiC-particle reinforced composites were produced by powder metallurgy using a 2124 Al-alloy matrix and two powder blending techniques: ball milling and wet blending. The effect of the blending route on the stress relaxation during thermal cycling is studied by in situ neutron diffraction based on the determination of the average stresses in the matrix and the particles. The thermal stresses in both composites partially relax by creep at T ? 90 °C. The higher creep resistance of the composite produced by ball milling reduces relaxation in comparison with the wet blended composite. This results in average axial compressive thermal stresses of ~?50 MPa and ~?10 MPa after heating to 230–300 °C in the matrices of the ball milling and wet blending composites, respectively, which relax at rates ?5 × 10?9–3 × 10?8 s?1.  相似文献   

5.
The effect of residual stresses on the reverse bending fatigue strength of steel sheets with punched holes was studied for steels with tensile strength grades of 540 MPa and 780 MPa. Tensile and compressive residual stresses were induced around the punched holes. Heat treatment of the specimens with punched holes at 873 K for 1 h decreased the residual stresses around the holes and improved the fatigue strength of the sheets. This result means that the tensile residual stresses induced in the sidewalls of the holes and near the hole edges by punching reduced fatigue strength. The effect of the residual stresses on the fatigue limits of the edges was estimated by the modified Goodman relation using the residual stresses after cyclic loading and the ultimate tensile strength at the fatigue crack initiation sites.  相似文献   

6.
This paper uses a 3D thermo-mechanical finite element analysis to evaluate welding residual stresses in austenitic stainless steel plates of AISI 304L. The finite element model has been verified by the hole drilling method. The validated finite element (FE) model is then compared with the ultrasonic stress measurement based on acoustoelasticity. This technique uses longitudinal critically refracted (LCR) waves that travel parallel to the surface within an effective depth. The residual stresses through the thickness of plates are evaluated by four different series (1 MHz, 2 MHz, 4 MHz and 5 MHz) of transducers. By combining FE and LCR method (known as FELCR method) a 3D distribution of residual stress for the entire of the welded plate is presented. To find the acoustoelastic constant of the heat affected zone (HAZ), a metallographic investigation is done to reproduce HAZ microstructure in a tensile test sample. It has been shown that the residual stresses through the thickness of stainless steel plates can be evaluated by FELCR method.  相似文献   

7.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

8.
The present paper is aimed at investigating the effect of shot peening on the high and very-high cycle plain fatigue resistance of the Al-7075-T651 alloy. Pulsating bending fatigue tests (R = 0.05) were carried out on smooth samples exploring fatigue lives comprised between 105 and 108 cycles. Three peening treatments were considered to explore different initial residual stress profiles and surface microstructural conditions. An extensive analysis of the residual stress field was carried out by measuring with the X-ray diffraction (XRD) technique the residual stress profile before and at the end of the fatigue tests. Fatigue crack initiation sites were investigated through scanning electron microscopy (SEM) fractography. The surface morphology modifications induced by shot peening were evaluated using an optical profilometer. The influence of surface finishing on the fatigue resistance was quantified by eliminating the surface roughness in some peened specimens through a tribofinishing treatment. The capability of shot peening to hinder the initiation and to retard the subsequent propagation of surface cracks is discussed on the basis of a model combining a multiaxial fatigue criterion and a fracture mechanics approach.  相似文献   

9.
In this paper, a numerical analysis of in-cavity residual stress formation in the thin-walled parts of injection-moulded parts is presented by considering the residual stresses produced during the post-filling stage. Injection moulding of shallow thin-walled parts with a thickness of 0.7 mm was performed using lignocellulosic polymer composites (PP + 50 wt% wood), and the parts have been systematically investigated using simulation results from Autodesk MoldFlow Insight® software. In-cavity residual stresses constitute the primary stage for analysis because of the need to control the quality of moulded parts to prevent problems with shrinkage and warpage. The analysis showed that the cooling times and packing times had a less significant effect; nevertheless, the optimal levels that are required to be used in the moulding process for thin-walled parts yielded better results. The in-cavity residual stress results show that the stress variation across the thickness exhibits a high tensile stress at the part surface, which changes to a low tensile stress peak value close to the surface, with the core region experiencing a parabolic tensile stress peak. The optimum parameter ranges for obtaining the minimum in-cavity residual stresses are as follows: a mould temperature of 40–45 °C, a cooling time of 20–30 s, a packing pressure of 0.85Pinject, and a packing time of 15–20 s.  相似文献   

10.
In the assessment of welded joints submitted to multiaxial loading the calculations method applied, independently of the concept (nominal, structural, hot-spot or local), must consider primarily the materials ductility. While proportional loading can be assessed by von Mises, the principal stress hypothesis, the Findley method or the Gough–Pollard relationship, using any of the mentioned concepts, difficulties occur when the loading is non-proportional, i.e. the principal stress (strain) direction changes. This causes a significant fatigue life reduction for ductile steel welds, but an indifferent behaviour for semi-ductile aluminium welds. This different response to non-proportional loading can be assessed when ductility related mechanisms of fatigue failures, i.e. the mean value of plane oriented shear stresses for ductile materials and a combination of shear and normal stresses for semi-ductile materials, are properly considered.However, as these methods require a good expertise in multiaxial fatigue, for design codes used by non-fatigue experts, simpler but sound calculation methodologies are required. The evaluation of known fatigue data obtained with multiaxial constant and variable amplitude (spectrum) loading in the range N > 104 cycles suggests the application of the modified interaction algorithm of Gough–Pollard. In the case of variable amplitude loading, constant normal and shear stresses are replaced by modified reference normal and shear stresses of the particular spectrum. The modification of the reference stresses is based on the consideration of the real Palmgren–Miner damage sum of DPM = 0.5 (for spectra with constant mean loads) and the modification of the Gough–Pollard algorithm by consideration of the multiaxial damage parameter DMA = 1.0 or 0.5, which is dependent on the material’s ductility and on whether the multiaxial loading is proportional or non-proportional. This method is already part of the IIW-recommendations for the fatigue design of welded joints and can also be applied by using hot-spot or local stresses.  相似文献   

11.
A fatigue prediction approach is proposed using fracture mechanics for laser beam welded Al-alloy joints under stationary variable amplitude loading. The proposed approach was based on the constant crack open stress intensity factor in each loading block for stationary variable amplitude loading. The influence of welding residual stress on fatigue life under stationary variable amplitude was taken into account by the change of crack open stress intensity factor in each loading block. The residual stress relaxation coefficient β = 0.5 was proposed to consider the residual stress relaxation for the laser beam welded Al-alloy joints during the fatigue crack growth process. Fatigue life prediction results showed that a very good agreement between experimental and estimated results was obtained.  相似文献   

12.
This paper studies a multiaxial fatigue crack mode and a fatigue life of Ti–6Al–4V. Load controlled fatigue tests at room temperature were carried out using a hollow cylinder specimen under multiaxial loading with principal stress ratio λ equal to 0, 0.4, 0.5 and 1.0 and loading ratio R kept constant and equal to 0. λ is defined as λ = σ2/σ1, where σ1 and σ2 are maximum and intermediate/minimum principal stresses, respectively. Here, the test at λ = 0 is a uniaxial loading test and that at λ = 1.0 an equi-biaxial loading test. A testing machine employed was a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loading with inner pressure into the hollow cylinder specimen. Based on the obtained results in this study, multiaxial fatigue properties are examined, where the fatigue life evaluation and the crack mode are discussed. The fatigue life is reduced with an increase of λ, due to cyclic ratcheting and crack mode in multiaxial loading. The crack mode is also affected by the surface condition resulting from cut-machining.  相似文献   

13.
This paper studies a multiaxial fatigue crack mode and a fatigue life of Ti–6Al–4V. Load controlled fatigue tests at room temperature were carried out using a hollow cylinder specimen under multiaxial loading with principal stress ratio λ equal to 0, 0.4, 0.5 and 1.0 and loading ratio R kept constant and equal to 0. λ is defined as λ = σ2/σ1, where σ1 and σ2 are maximum and intermediate/minimum principal stresses, respectively. Here, the test at λ = 0 is a uniaxial loading test and that at λ = 1.0 an equi-biaxial loading test. A testing machine employed was a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loading with inner pressure into the hollow cylinder specimen. Based on the obtained results in this study, multiaxial fatigue properties are examined, where the fatigue life evaluation and the crack mode are discussed. The fatigue life is reduced with an increase of λ, due to cyclic ratcheting and crack mode in multiaxial loading. The crack mode is also affected by the surface condition resulting from cut-machining.  相似文献   

14.
The microsupport effect at sharp notches subjected to high-cycle fatigue can be described according to Neuber by averaging the maximum notch stress in a small material volume (microsupport length ρ*) at the notch root (radius ρ). The averaged stress may be expressed by the maximum stress of a corresponding notch of an enlarged, fictitious radius, ρf = ρ + *, where s is the microsupport factor. The status of Neuber’s concept within his general theory of notch stresses is reviewed, followed by more recent theoretical and application-relevant developments. The theoretical developments refer to the notch angle dependency of the support factor, to its value for pointed versus rounded notches and to in-plane shear loading with out-of-bisector crack propagation. The application developments refer to the fatigue assessment of welded joints.  相似文献   

15.
Three types of welded joints have been assessed with regard to their fatigue strength based on the mean-stress damage parameter model according to Smith, Watson, and Topper (PSWT) and on the reference notch radius concept. These analyses were performed with three different stress ratios, R = −1, R = 0 and R = 0.5, under axial loading. For each stress level, the corresponding Neuber-Hyperbolas, Masing-loops and their maximum stress and maximum strain values were determined in order to calculate damage parameter (PSWT) values. For a given weld geometry, this damage parameter is able to unify the fatigue results for different R-values within at a tight scatter band and therefore to consider the mean-stress effect. The unification of the results for different weld geometries is performed by applying the reference radii rref = 0.05 and rref = 1.00 mm as suggested by the IIW-Recommendations.  相似文献   

16.
The weld toe is one of the most probable fatigue crack initiation sites in welded components. In this paper, the relative influences of residual stresses and weld toe geometry on the fatigue life of cruciform welds was studied. Fatigue strength of cruciform welds produced using Low Transformation Temperature (LTT) filler material has been compared to that of welds produced with a conventional filler material. LTT welds had higher fatigue strength than conventional welds. A moderate decrease in residual stress of about 15% at the 300 MPa stress level had the same effect on fatigue strength as increasing the weld toe radius by approximately 85% from 1.4 mm to 2.6 mm. It was concluded that residual stress had a relatively larger influence than the weld toe geometry on fatigue strength.  相似文献   

17.
This paper presents single-line residual stress profiles for 8 mm 5083-H321 aluminium plates joined by gas metal arc (MIG) welding. The data were obtained by synchrotron diffraction strain scanning. Weld metal stresses (up to ~7 mm either side of the centreline) are quite scattered and unreliable because of the large epitaxial grain size in the fusion zone. Peak magnitude of the transverse stresses varies between +50 MPa (19% of parent plate proof strength) at the HAZ boundary to ?150 MPa (57% of PP proof strength) at the weld centreline. Equivalent values for longitudinal stresses are +90 MPa (34% of PP proof strength) some 22 mm from the weld centreline to ?120 MPa (45% of PP proof strength) at the weld centreline. Plate-to-plate variation in the as-welded transverse and longitudinal residual stress values across the weld toe region is around 40 MPa. The effect on residual stress and strain values of a sequence of applied fatigue loads was also considered and reported.  相似文献   

18.
《Composite Structures》2012,94(1):290-298
Compression–compression fatigue test study of a fire resistant Eco-Core was conducted at two values of stress ratios (R = 10 and 5). Tests were conducted at Smin/So values of 0.9–0.6 for R = 10 and 0.95–0.8 for R = 5. Here Smin is the maximum compression stress and So is the compression strength. The study showed that Eco-Core has well defined failure modes and associated fatigue lives. The failure modes are: damage on-set; damage progression, and final failure. The damage on-set, propagation and final failure were characterized by 2%, 5% and 7% changes in compliance. The three failure modes were found to be same for both static and fatigue loadings. The endurance limit was found to be 0.72So, 0.75So and 0.76So, respectively for three failure modes for R = 10 and 0.81So, 0.82So and 0.82So, respectively for R = 5. The fatigue life is defined by a power law equation, Smin/So = AoNα. Constants of the equation were established for all three modes of failures and the two stress ratios. Finally, fatigue life was found to be less sensitive to R ratio when expressed in terms of stress range versus number of load cycles, which is similar to that of metallic materials.  相似文献   

19.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   

20.
In the present paper, the mechanism of shear crack growth under both pure torsion and mixed mode loadings, simulating rolling contact fatigue testing conditions, has been investigated for a bearing steel and the role of the superimposed compressive stress in subsurface RCF has been clarified both numerically and experimentally. In particular a previous data set of fatigue tests on micro-notched specimens subjected to torsion and out-of-phase loads with |σmin|/τmax  3.5 (LP1) has been complemented with the new tests onto micro-notched specimens loads with |σmin|/τmax  0.7 (LP2) and a test under pure compression. The same tests have been also simulated numerically with a non-linear FE analysis of crack advance. The numerical analyses have been conducted with the aim of demonstrating that the compressive stress fully suppresses the tendency to tensile mode growth as the crack extends.Eventually, the competition between tensile and shear mode growth during a fatigue cycle has been investigated theoretically in terms of local branch SIFs. In particular, the conditions for the branch crack growth have been examined on the basis of the effective SIFs: the crack tip shielding effects due to the crack surface interference (both the mode I contribution caused by the asperity mismatch and the shear attenuation produced by the frictional stresses) have been quantified by employing a model for crack sliding interaction under pure mode III and mixed mode I + III loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号