首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
分析了飞秒激光精微加工面齿轮材料18Cr2Ni4WA的机理,在光子与电子,电子与晶格之间温度传递的双温模型的基础上建立了耦合动态热力学参数的复耦合模型,通过模型仿真分析,得出了电子与晶格的温度变化过程,预测了去除高于蒸发温度的材料烧蚀形貌。对面齿轮材料进行飞秒激光扫描加工实验,得出随着能量密度的增大,凹坑半径和深度都会有一定程度的增大,当能量密度为1.98 J/cm2时,烧蚀形貌较好,当能量密度继续增大达到2.18 J/cm2时,凹坑内部开始产生少量的熔融物堆积;随着脉宽的增大,形貌变化不大,但产生的熔融物逐渐减少,凹坑趋于平整;随着扫描速度的增大,沟槽的深度逐渐减小,宽度逐渐增大。采用三维超景深仪观测烧蚀形貌,实验结果与仿真结果基本一致,为飞秒激光精微加工面齿轮提供了依据。  相似文献   

2.
利用烧蚀阈值理论,研究飞秒激光对面齿轮的烧蚀特征,得到了面齿轮的烧蚀阈值。建立烧蚀模型,计算仿真了飞秒激光在单脉冲与多脉冲烧蚀过程中的理论宽度与深度。利用等离子体冲击波传播半径随时间变化的规律,耦合飞秒激光多脉冲烧蚀时的表面残余温度变化,得到等离子体冲击波的动态反冲压力机理图,并得到飞秒激光加工过程中,等离子体冲击波动态反冲压力对烧蚀的凹坑形貌以及扫描隧道与烧蚀平面形貌变化的影响。通过试验验证飞秒激光对面齿轮进行隧道扫描时,随着扫描速度的增加,隧道的直线度降低。高功率条件下,增加相邻扫描道扫描间距,烧蚀后的齿面精度更高。  相似文献   

3.
飞秒激光精微加工面齿轮材料18Cr2Ni4WA是去除材料的先进制造方法。本文依据烧蚀凹坑的深度与宽度和激光能量密度的关系得到材料的烧蚀阈值和影响重叠率的因素。考虑齿轮材料成分间互温感应效应与多脉冲激光累积效应,建立材料的能量复耦合模型。通过改变激光能量密度和脉冲数,研究飞秒激光烧蚀凹坑及齿面形貌表面的变化规律,得出脉冲数对烧蚀效果影响小,激光能量密度为1.730 J/cm2激光功率为1.9 W脉冲数N=3000进行烧蚀效果最好可得到最优的实际烧蚀面深度为17.604μm。  相似文献   

4.
崔静  张杭  路梦柯  翟巍  杨广峰 《激光与红外》2020,50(9):1035-1042
为探究超快激光对金属材料的烧蚀特性,利用飞秒脉冲激光加工TC4,研究加工后TC4表面的形貌特点,分析飞秒激光加工金属的作用机理。当激光能量密度为8.05 J/cm2时,用白光干涉和扫描电镜观察不同扫描速度下材料表面的形貌变化。随着扫描速度的降低,表面条纹变深,条纹上方的二级微纳凸起尺寸增大,粗糙度增加,条纹侧面出现经典低空间频率条纹。从高斯光束特点和光斑重叠率角度对各种形貌的形成机理进行分析,高斯光束光斑中心处能量密度高,条纹上方形成凸起,侧面形成经典条纹;当光斑重叠率越大,单位面积内能量密度就越大,表面微结构尺寸也随之增大。  相似文献   

5.
研究了铜片在不同能量密度的单脉冲飞秒激光下烧蚀的结果。 将飞秒激光烧蚀实验的结果结合双温模型在有限差分法下模拟出的数据图,从而研究不同激光能量密度与烧蚀间的联系。飞秒激光的烧蚀过程属于非平衡烧蚀,按照模拟出的数据,对铜片烧蚀过程中表面电子温度及晶格温度有了直观的认识,进而进行研究,得出整个激光烧蚀中热弛豫规律。 在不同能量密度的飞秒激光烧蚀下对电声相互作用的研究,其模拟结果有利于找出能量密度与飞秒激光烧蚀的关联,而实验图进一步表明了提升飞秒激光能量密度与加工铜材料的加工效率以及加工质量之间的意义。综合以上分析,能够得出随着飞秒激光能量密度的增加,飞秒激光烧蚀期间材料的热弛豫过程加长,烧蚀强度有所增加,材料加工后得出形貌质量提高,其对于飞秒激光烧蚀材料的研究具有很大意义。  相似文献   

6.
微纳米尺度的表面结构在表面工程中有着许多特殊的性能和应用,为了研究飞秒激光制备不锈钢表面微纳结构的机理,基于经典双温模型理论对飞秒激光烧蚀304不锈钢的过程进行了数值模拟计算。经过计算得到了不同激光能量密度、不同烧蚀深度处电子与晶格系统温度的演化规律,确定了飞秒激光单脉冲作用下的烧蚀阈值,通过数值模拟得到飞秒激光烧蚀不锈钢只发生在材料的表面,对内部的材料影响很小。最后使用飞秒激光微纳加工系统在不锈钢表面制备了微纳结构,多边形微孔结构保持了高质量的边缘形貌,在孔的内壁出现了周期性结构。  相似文献   

7.
为了研究飞秒激光对不锈钢材料的加工工艺,采用基于飞秒激光材料烧蚀的微细加工方法,深入研究了飞秒激光高效高质量微细加工不锈钢材料的工艺条件与参量优化,并应用于微型不锈钢悬臂梁的制作。分析了激光能量密度、激光扫描速度、重复扫描次数对加工形貌和蚀除速率的影响,制作出了高质量的微米量级的不锈钢微型悬臂梁。结果表明,飞秒激光微细加工是一种极具前途与极具柔性的微机电系统器件加工手段。  相似文献   

8.
为研究飞秒激光脉冲对涡轮叶片材料的冲击打孔特性,使用双脉冲改写方程的激光光源项,并对涡轮叶片材料进行数值模拟,得到了镍基高温合金在飞秒激光双脉冲冲击打孔下的晶格和电子温度。通过对比单脉冲的模拟结果发现:双脉冲烧蚀情况下,材料电子和晶格出现2个峰值温度,且电子和晶格的平衡温度相比单脉冲提高345k,平衡时间延长了5ps,用 美国Ray Crop生产的飞秒脉冲激光器,对镍基高温合金材料在不同的激光参数下:激光脉冲宽度、激光能量、激光频率、脉冲间隔对材料的烧蚀进行双脉冲打孔,得到孔的形貌特征,并与单脉冲打孔对比发现双脉冲打孔的质量和效率优于单脉冲。  相似文献   

9.
飞秒激光加工面齿轮材料18Cr2Ni4WA是一种面齿轮精微修正的新型加工技术。首先,根据烧蚀凹坑的直径和激光功率的定量关系得到激光的烧蚀阈值,根据烧蚀凹坑的深度和激光功率的定量关系得到材料的吸收系数。然后,考虑到能量累积效应,从高斯激光的聚焦方式考虑变离焦量效应,建立材料内部的能量吸收模型。最后,通过改变脉冲数和激光功率,研究飞秒激光烧蚀凹坑直径和深度的变化规律。实验结果表明,脉冲频率为200 kHz的飞秒激光脉冲数大于20时,烧蚀凹坑的直径和深度趋于稳定,这与理论结果相吻合。随着激光功率的增大,飞秒激光的加工质量有明显下降,当激光功率为1 W时,飞秒激光的加工质量良好且烧蚀深度足够深。  相似文献   

10.
首先基于一维双温模型阐明了飞秒激光与RB-SiC表面的相互作用过程,并在此基础上,开展了RB-SiC表面飞秒激光烧蚀规律与抛光工艺研究。结果表明,通过改变脉冲能量、扫描速度、扫描间距等参数,可实现对烧蚀深度和烧蚀表面质量的有效调控。但是通过飞秒激光抛光难以在RB-SiC切割表面上获得较高的表面质量,而对于RBSiC预抛光表面,通过工艺参数调控,可将其表面粗糙度从36.9 nm抛光至11.56 nm,验证了飞秒激光抛光RB-SiC的可行性。  相似文献   

11.
飞秒、皮秒激光烧蚀金属表面的有限差分热分析   总被引:12,自引:4,他引:12  
倪晓昌  王清月 《中国激光》2004,31(3):77-280
为描述飞秒激光烧蚀金属表面过程,对双温方程进行了约化。用有限差分法对飞秒、皮秒脉冲激光在金属表面烧蚀过程的温度场进行了一维数值模拟。分析了在飞秒领域对双温方程约化的合理性。计算模型对电子与光子耦合系数的大小对金属表层电子温度的影响进行了分析。同时考虑不同脉宽、不同能流及功率密度大小的因素。发现电子与晶格耦合系数影响材料表面电子的温升及电子与晶格温度耦合时间;与皮秒激光比较。脉冲功率密度是影响电子最终温度的主要因素;飞秒激光烧蚀金属材料的厚度可达到表层厚度(吸收系数的倒数)量级。  相似文献   

12.
王震  付文静  张蓉竹 《红外与激光工程》2019,48(7):706002-0706002(5)
从表面微结构加工需求出发,研究了超短脉冲对金属材料的烧蚀作用。利用双温方程推导了多脉冲辐照分析模型,分别对单脉冲及多脉冲烧蚀金属铁的温度变化规律进行了定量计算和比较。结果表明,激光能量密度、脉冲宽度、脉冲时间间隔是影响电子/晶格温度变化规律的几个主要因素,并最终绘制出了在不同的激光能量密度烧蚀下,材料达到烧蚀阈值需要的脉冲个数,以此为加工过程中的激光控制提供理论依据。  相似文献   

13.
为了分析飞秒激光烧蚀面齿轮齿面表层构成及其形态影响,本文针对面齿轮材料18Cr2Ni4WA,通过建立双温传热模型,模型采用向后有限差分法进行飞秒激光烧蚀数值模拟,研究飞秒激光烧蚀齿面的加工过程,分析能量密度对重铸层和热影响层的影响规律。结果显示:能量密度由173J/cm2增加至433J/cm2,重铸层厚度从068μm增加到102μm,热影响层厚度从096μm增加到135μm。针对重铸层的控制,本文实施了对面齿轮齿面的二次加工,实验结果表明:采用能量密度173J/cm2对齿面进行二次加工,加工后的齿面几乎没有重铸物残留,齿面平均粗糙度由0365μm降到了0185μm,有效地改善了面齿轮的加工质量,为提高飞秒激光精微烧蚀面齿轮精度提供了有益参考。  相似文献   

14.
何魁魁  周广福  戴玉堂 《激光与红外》2022,52(12):1768-1773
为了探究石英晶体飞秒激光刻蚀工艺,本文使用波长为1030 nm、重复频率20 kHz、脉冲宽度290 fs的飞秒激光系统研究了飞秒激光参数、定焦点与变焦点扫描以及飞秒激光裂片技术对刻蚀石英材料的影响。首先研究了飞秒激光扫描次数、扫描速度及离焦量对刻蚀石英微槽的影响规律。其次对比分析了定焦点扫描与变焦点扫描对微槽形貌的影响,最后研究了飞秒激光裂片石英材料技术。研究表明,在激光单脉冲能量为60μJ,扫描速度4 mm/s,扫描次数为50条件下获得槽宽为32μm,深宽比达2.2的石英微槽;相较于定焦点扫描,变焦点扫描时微槽侧壁趋近于直壁状态,微槽壁面角从56°降低至34°;当扫描次数增加到一定程度时会在微槽底部诱导裂纹的产生,微裂纹进一步扩展形成切面,裂纹扩展区切面质量明显高于飞秒激光烧蚀区。  相似文献   

15.
恒弹性合金的加工对表面质量和加工精度的要求越来越高,为了实现对恒弹合金的精密定量去除,本文探索了采用飞秒激光烧蚀的加工新方法。首先,分析计算了在高强度飞秒激光辐照加工下,恒弹性合金材料的烧蚀阈值;其次,实验研究了飞秒激光脉冲能量和脉冲个数对该材料上烧蚀加工微坑的直径和深度的影响,结果表明:恒弹性合金的飞秒激光烧蚀阈值为0.167 J/cm2;可以通过增大脉冲能量来增大烧蚀坑直径,通过增大脉冲数来增大烧蚀坑深度。脉冲烧蚀坑直径上限为150.64 μm,运用飞秒激光旋切加工方法,可获得直径为500 μm的微孔,提高了飞秒激光烧蚀加工的能力。  相似文献   

16.
材料加工,主要是微加工中的许多应用正促进高重复率飞秒激光的研制。从物理学角度看,这种加工能定义为薄表面层材料的激光烧蚀,与周围物质没有明显的热交换。在金属中激光脉冲通常被电子吸收。在几皮秒时间内这些电子将它们的能量传输给晶格。在非金属(例如半导体和电介质)中,光电离和级联电离是初始激光脉冲吸收过程,其后的过程与金属情况相似。在紫外光辐照情况下,材料的烧蚀及其后转变成等离子体能在比蒸发温度低的温度下发生。当热量没从吸收区消散时,快速等离子体产生和薄层中的烧蚀是可能的。如果激光脉宽比热扩散时间短就会…  相似文献   

17.
许媛  宁仁霞  鲍婕  侯丽 《激光与红外》2019,49(4):432-437
为了深入理解超短脉冲激光烧蚀金属的机理,特别是烧蚀过程中靶面电子发射带来的影响,本文分析了飞秒脉冲激光烧蚀金属的机理,并在此基础上建立了一维热传导双温模型,模型考虑了电子热导率、热容、电子-晶格耦合系数等参数随温度的变化,以及表面热电子发射和多光子电离导致靶面的能量损失。选择波长为 800 nm,FWHM为100 fs,峰值功率密度为1.2×1017 W/m2 的高斯型单脉冲激光辐照铜靶进行数值模拟。并对计算数据进行分析,结果表明:多光子电离所导致的电子发射比热电子发射要强,但是热电子发射持续的时间长;多光子电离导致的电子发射带走的靶面能量比较大,在分析飞秒烧蚀过程中不可忽略。  相似文献   

18.
陈妮  闫博  李振军  李亮  何宁 《中国激光》2020,(12):127-134
构建了高斯脉冲激光线刻蚀能量密度分布模型,研究了激光功率和脉冲数对化学气相沉积(Chemical Vapor Deposition,CVD)金刚石表面上的点/线尺寸的影响规律,得到了能量在材料表面的扩散机理及刻蚀面组分,并在此基础上进行了激光面刻蚀。结果表明:高斯单脉冲激光作用下刻蚀轮廓近似为高斯曲面,间接证明了激光束在材料表面作用的能量呈高斯分布,且刻蚀面由金刚石、石墨和杂化物质构成,CVD金刚石表面的脉冲点刻蚀深度和宽度都随着激光功率和脉冲数的增大而增大。激光功率对CVD金刚石表面线刻蚀程度的影响较大,当功率值增大12 W时,刻蚀宽度和侧面扫入深度分别增大23.32μm和346.04μm;激光扫描速度则对CVD金刚石表面线刻蚀程度的影响相对较小,当扫描速度增大49.8 mm/s时,刻蚀宽度和侧面扫入深度分别减小了6.35μm和70μm。在功率为3 W、扫描速度为50 mm/s和扫描间距为2μm的条件下进行了激光面刻蚀,刻蚀深度为9.71μm,表面粗糙度为1.10μm。  相似文献   

19.
使用波长为1 030 nm飞秒脉冲激光在M35高速钢表面加工微凹坑阵列,运用光学显微镜、白光干涉仪和接触角测量仪分别测量样品表面的三维形貌和接触角,探究不同参数对样品表面形貌和接触角的影响规律。结果表明,随能量密度和扫描次数增加,微凹坑的半径和深度均增大,M35高速钢表面接触角减小,样品表面亲水性增大,微凹坑间距减小可提高M35高速钢表面的亲液性。试验结果可为高速钢表面润湿性的研究提供参考。  相似文献   

20.
为了从石英单晶薄片上切割分离出复杂形状的器件,进行了石英单晶薄片的飞秒激光基础试验。在50、100、200 kHz高重复频率下,试验研究了烧蚀孔径与激光参数的关系,从而分析计算得到在对应重复频率下纯石英的刻蚀阈值分别为3.73、3.45、3.2 J/cm2。然后,研究了飞秒激光的脉冲能量、扫描速度等加工参数对微槽加工质量的影响。结果表明,激光脉冲能量会显著改变加工微槽的表面形貌,扫描速度控制在3.5 mm/s附近时加工效果最优。最后,利用优化的工艺参数,在厚度0.45 mm的石英晶片上切出了谐振音叉类复杂形状器件,总体上达到了预期的质量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号