首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study, we incorporated micro-silver flakes and nano-hexagonal boron nitride (BN) particles into a matrix resin to prepare electrically conductive adhesives (ECAs). The humid and thermal aging results under a constant relative humidity level of 85% at 85 °C revealed that the aged ECAs containing 3 wt% of nano-hexagonal BN particles had high reliability. The contact resistance was low and the shear strength high. Nano-hexagonal BN particles have a good effect on the reliability of ECAs that can be used to improve the properties of ECAs.  相似文献   

2.
We report sodium dodecyl sulfate (SDS) stabilization of graphene nanosheets, with two different sizes as auxiliary fillers inside the conventional electrically conductive adhesive (ECA) composite. Using this non-covalent modification approach we were able to preserve the single-layer structure of graphene layers and prevent their re-stacking inside the composite, which resulted in a significant electrical conductivity improvement of ECAs at noticeably low filler content. Addition of 1.5 wt% small and large SDS-modified graphene into the conventional ECAs with 10 wt% silver flakes led to low electrical resistivity values of 5.5 × 103 Ω cm and 35 Ω cm, respectively, while at least 40 wt% of silver flakes was required for the conventional ECA to be electrically conductive. A highly conductive ECA with very low bulk resistivity of 1.6 × 10−5 Ω cm was prepared by adding 1.5 wt% of SDS-modified large graphene into the conventional ECA with 80 wt% silver flakes which is less than that of eutectic lead-based solders.  相似文献   

3.
In this study, five different flexibilizers were added into a matrix resin to improve the flexibility of electrically conductive adhesives (ECAs). The flexible ECAs were fabricated from the matrix resin and electrically conductive fillers. Their curing was fixed at 150 °C for 30 min. Of the five flexibilizers, 1,3‐propanediol bis(4‐aminobenzoate) (PBA) had the best effect on the electrical, mechanical and thermal properties of the ECAs. During curing, PBA reacted with the functional epoxy in the matrix resin. The soft ether segments in PBA were grafted into the crosslinked epoxy network to form an orderly spaced mesh structure. This led to high‐temperature stability, with the pyrolysis temperature being above 350 °C. Flexible ECAs with a 10% weight ratio of PBA in the matrix resin had the best properties. Their viscosity and bulk resistivity were the lowest. Their flexibility and electrical conductivity were the highest. They also had low storage modulus which could effectively dissipate or reduce the residual shear stress generated by the mismatch of thermal expansion coefficient between chip and substrate. Their impact strength was the lowest, and the toughening effect was so significant that the improvement was about 48% compared to ECAs. © 2013 Society of Chemical Industry  相似文献   

4.
In this paper, silver nanoparticles with size of 30–50 nm were synthesized by reducing silver nitrate with sodium borohydride and sodium citrate and using PVP as an adsorption agent in the ethanol solution. The experimental results indicate that the morphologies and sintering behaviors of both kinds of silver nanoparticles are impacted by glutaric acid and sintering temperature. The electrically conductive adhesives (ECAs) filled with micro-sized silver flakes and silver nanoparticles as hybrid fillers were fabricated and the electrical properties were investigated based on the fraction of the silver nanoparticles of the total of silver flakes and the curing temperature, etc. The incorporation of the untreated/treated silver nanoparticles into the polymer matrix with 65?wt% silver filler the resistivity increased in almost all cases, especially the high fraction and the low curing temperature. The curing temperature has influence on the resistivity of the ECAs filled with micro-sized silver flakes and the silver nanoparticles due to the sintering of the silver nanoparticles. The addition of 10% treated silver nanoparticles into the ECAs with 60?wt% silver fillers, the resistivity is slightly lower than that of the ECAs with micro-sized silver flakes. In the system of the ECAs with the high loading of silver fillers, the untreated/treated silver nanoparticles have little effect on the electrical conductivity. The results suggest that the morphology and distribution of silver fillers are the key to affect the conductivity of ECAs when nanoparticles are included in the system.  相似文献   

5.
Nitrogen-doped graphene nanosheets (N-GNSs) were used as a conductive filler for a polymer resin adhesive and as a performance improver for a silver-filled electrically conductive adhesive (ECA). The N-GNS samples were prepared by the chemical-intercalation/thermal-exfoliation of graphite followed by a thermal treatment in NH3. Only 1 wt.% of N-GNSs was required for the adhesive to reach a percolation threshold, and the performance using N-GNSs was much better than that obtained using carbon black or multi-walled carbon nanotubes (MWCNTs). The effect of N-GNS or MWCNT additives on reducing the electrical resistivity of Ag-particle filled ECAs at low Ag loading ratios was also investigated. With 30 wt.% of Ag filler, the polymer resin was still non-conducting, while a resistivity of 4.4 × 10−2 Ω-cm was obtained using an Ag/N-GNS hybrid filler fortified with only 1 wt.% of N-GNSs due to large specific surface area, high aspect ratio, and good electrical conductivity of the doped graphene.  相似文献   

6.
Various amounts of silver flakes and dendrites were used as conductive fillers in an electrically conductive adhesive (ECA) resin with DPM, BCA and xylene as diluent to help uniform distribution of filler particles in the matrix. Due to the fact that the higher the temperature, the higher the shrinkage rate of the polymer resin and, consequently, the larger the connecting area in-between fillers, a better curing condition for processing silver filled ECA was found to be a relatively higher curing temperature. The mechanism of conductivity achievement in conductive adhesives was analyzed by comparing processing conditions, resistivity and microstructures. In addition, the influence of adding nano-sized silver particles on the resistivity of the conductive adhesives was also investigated and the addition of nano-sized silver particles resulted in a lower percolation threshold for ECAs.  相似文献   

7.
In this paper, the authors explored the effects of processing variables, including carbon nanotube (CNT) concentration, assembly pressure, and processing temperature, on electrical conductivity of CNT-included electrically conductive adhesives (ECAs). The main effects of these variables were analyzed under specific range for each variable. Response surface methodology was used to investigate the cross-effects of these variables on ECA conductivity. By fitting the experimental data to the response function, minimum bulk resistivity of 1.5×10?4 Ω cm was obtained at the optimum settings of processing variables (CNT concentration 2%, processing temperature 199 °C, pressure 6000 psi).  相似文献   

8.
A thermally conductive and electrically insulating composite filler was produced by surfactant assisted sol–gel coating of amorphous silica on flake graphite. Amorphous silica-coated graphite (a-Si coated grp) obtained using a cationic surfactant showed the best enhancement of the insulating coating. The resulting a-Si coated grp/boehmite/polybutylene terephthalate polyester resin composite exhibited a high volume resistivity, exceeding 1.0 × 1014 Ω cm at an applied voltage of 500 V, and a thermal conductivity of 3.3 W/m K at 22.9 vol.% a-Si coated grp loading. The heat releasing performance of the developed resin composite in actual light-emitting diodes bulb housings was compared with conventionally used thermally and electrically conductive resin. This comparison revealed that the new composite released heat more effectively. This innovative technology, which may solve the trade-off between material properties and cost, will be available for a broad range of thermally conductive resin applications that simultaneously require thermal conduction and electrical insulation.  相似文献   

9.
The recent advances in portable and flexible electronic devices demand integration of flexibility into future electromagnetic interference shielding materials. Here we synthesized flexible adhesive shields made of microscale silver flakes (Ag flakes), multi-walled carbon nanotubes decorated with nanoscale silver particles (nAg-MWNTs), and nitrile butadiene rubber (NBR). The addition of nAg-MWNTs into the Ag flake–NBR mixture significantly enhanced both conductivity and shielding effectiveness. Long nanotubes electrically linked microscale Ag flakes embedded in the NBR matrix, and nanoscale silver particles further improved the contact interface. There was a logarithmic relationship between the conductivity and shielding effectiveness. The dominant mechanism of electromagnetic interference shielding was reflection. The achieved maximum shielding effectiveness was about ∼75 dB at 1 GHz. The flexible adhesive shield printed on a polyimide film was wrapped around a cylindrical rod with a radius of 4 mm. The shielding effectiveness decreased about 20% after 100 wrapping cycles. The conductivity and shielding effectiveness could be adjusted by changing the Ag flake concentration. There was an excellent agreement between the theoretically predicted shielding effectiveness and the experimental data.  相似文献   

10.
Small, uniform and suspended silver nanoparticles were directly prepared in CO2-expanded hexane by reducing a synthesized metal precursor, silver isostearate, with hydrogen but without introducing additional capping agents. By increasing CO2 pressure, the suspended silver nanoparticles could be further deposited on a solid substrate to form silver thin film via gas antisolvent and the subsequent supercritical drying processes. The silver thin films prepared by the aforementioned method possessed a uniform thickness of about 150 nm without surface cracking and low electrical resistivity (5.64 × 10−6 Ω cm) after applying an annealing process. Due to the deposition of nano-sized silver particles, the annealing temperature could be as low as 175 °C that is lower than the softening points of many transparent polymeric substrates used for fabrication of flexible conductive films.  相似文献   

11.
The introduction of highly electrically conductive fillers (Ag microsheets and silver plating carbon fiber) can functionally improve the electrical conductivity of acrylate resin. In this study, Ag microsheets and Ag/CF were thus introduced into acrylate polymer via solution blending method under ultrasonication in order to improve the electrical conductivity of the acrylate resin. The properties and microstructures of Ag microsheets, CF, Ag/CF and ECAs were performed by scan electron microscope (SEM), X-ray diffraction analysis (XRD), etc. SEM images and XRD results illustrated that the impurities in carbon fiber could be completely removed after the adequately alkali treatment. The SEM images showed that large numbers of metallic silver particles were uniformly and densely coated on the surface of the carbon fibers and hybrid fillers (silver microsheets and Ag/CF) could homogeneously disperse in acrylate resin. Electrical conductivity measurements demonstrated that the electrical conductivity of ECAs increased with the increasing content of hybrid fillers and the percolation threshold of ECAs was 5 wt%. The electrical conductivity of ECAs at its percolation threshold was 15.79 S/cm, which was two orders of magnitude higher than that of the ECAs based on acrylate resin filled with silver microsheets. The increment in Ag/CF contents may decrease 180° peel strength and raise shear strength with low content of Ag/CF. The overall performance of ECAs was optimum with 2 wt% Ag/CF. The TGA analysis indicated that ECAs possess excellent thermal stability.  相似文献   

12.
In this study, a dual‐microcapsule epoxy‐amine self‐healing concept is used for electrically conductive adhesives (ECAs). It provides the ECA samples with the ability to recover mechanical and electrical properties automatically. Epoxy and amine microcapsules were prepared and incorporated into silver/epoxy ECAs. The healing efficiency and bulk resistivity of the undamaged, damaged, and healed specimens were measured, respectively. The optimal loading of the epoxy and amine microcapsules is 6 wt % (weight ratio 1.05), and the bulk resistivity of the healed specimens is 3.4 × 10?3 Ω cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41483.  相似文献   

13.
By alternating deposition of graphene oxide (GO) sheets and silver nitrate by means of an electrostatic self-assembly method, a GO–Ag+ film was prepared. After thermal annealing, a graphene–silver nanoparticle (GE–Ag) multilayer film, with high transparency and electrically conductivity, was obtained. The transmittance of a film with four assembly cycles was 86.3%, at a wavelength of 550 nm, better than that of a pure GE film (73.8%). While the surface resistance was 97  ?1, much lower than that of a pure GE film (430  ?1). The Ag nanoparticles play a crucial role in improving the properties of the GE–Ag film, acting as conductive paths and light-trapping nanoparticles, which not only reduces the reflection of the film, but also prevents the GE sheets from aggregation and provides conductive paths between sheets, improving the electrical conductivity.  相似文献   

14.
Liquid exfoliation of graphene generally results in flakes with lateral size of one micron or less on average, too small for many applications. In this paper we describe a method to separate an existing dispersion with mean flake length of ~1 μm into fractions, each with different mean flake size. The initial dispersion is centrifuged at a high centrifugation rate, separating small flakes in the supernatant from large flakes in the sediment. Redispersion of the sediment, followed by successive centrifugation, separation and redispersion cycles can be used to separate the flakes by size so long as the centrifugation rate is decreased with each cycle. This procedure results in a range of dispersions with mean flake length varying from 1 μm for the highest final centrifugation rate to 3.5 μm for the sample whose final centrifugation rate was 500 rpm.  相似文献   

15.
We report an efficient one-step approach to reduce and functionalize graphene oxide (GO) during the in situ polymerization of phenol and formaldehyde. The hydrophilic and electrically insulating GO is converted to hydrophobic and electrically conductive graphene with phenol as the main reducing agent. Simultaneously, functionalization of GO is realized by the nucleophilic substitution reaction of the epoxide groups of GO with the hydroxyl groups of phenol in an alkali condition. Different from the insulating GO and phenol formaldehyde resin (PF) components, PF composites are electrically conductive due to the incidental reduction of GO during the in situ polymerization. The electrical conductivity of PF composite with 0.85 vol.% of GO is 0.20 S/m, nearly nine orders of magnitude higher than that of neat PF. Moreover, the efficient reduction and functionalization of GO endows the PF composites with high thermal stability and flexural properties. A striking increase in decomposition temperature is achieved with 2.3 vol.% of GO. The flexural strength and modulus of the PF composite with 1.7 vol.% GO are increased by 316.8% and 56.7%, respectively.  相似文献   

16.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

17.
The mechanical bonding strength of electrically conductive adhesives (ECAs), as well as the impact of residual solvent on the bonding strength was investigated between a copper clad FR-4 surface and conductive adhesives using Lap-shear testing. Both solvent-free and solvent-assisted formulations with various filler concentrations of silver (Ag) and sodium dodecyl sulfate (SDS)-decorated graphene (Gr(s)) in epoxy matrices were prepared and compared. It was found that the introduction of 0.75 wt% Gr(s) in solvent-free formulations increased the Lap-shear strength (LSS), while the combination of ethanol solvent and SDS in solvent-assisted formulations significantly decreased the LSS. In addition, it was found that increasing the Ag content generally lowers the LSS for both the solvent-free and solvent-assisted formulations. By examining the structure and interface of both formulations using optical microscopy, surface profilometry and SEM, we found that the solvent-assisted formulations exhibit more voids at the surface of the paste and more bubble formation throughout the material compared to the solvent-free formulations. Therefore, the significant drops of LSS in solvent-assisted Gr(s)-filled formulations may be attributed to the formation of bubbles at the micron range during the curing process.  相似文献   

18.
The present paper deals with the processing method of SiC–(Nb,Ti)(ss)–(Ti,Nb)C(ss) composites. The electrically conductive phases were formed by in situ reaction: NbC(s) + Ti(s)  (Nb,Ti)(ss) + (Ti,Nb)C(ss) that takes place during the reaction sintering by hot pressing. Prepared composites exhibit good compromise between electrical and mechanical properties and the present approach allows preparing a wide variety of compositions. For example composites containing 80 wt.% SiC and 20 wt.% {(Nb,Ti)(ss)–(Ti,Nb)C(ss)} have an electrical resistivity 2.6 × 10−4 Ω m, hardness 21.6 GPa and fracture toughness 6.3 MPa m1/2.  相似文献   

19.
Two non-conducting chemicals, aniline and silver nitrate, dissolved in formic acid solutions, yielded a composite of two conducting products, polyaniline and silver. As the concentration of formic acid increased, an alternative reaction, the reduction of silver nitrate with formic acid to silver became dominant, and the content of silver in the composites increased. The formation of polyaniline was confirmed by UV–visible, FTIR, and Raman spectroscopies. The typical conductivity of composites was 43 S cm?1 at 84 wt.% of silver. Silver nanowires coated with polyaniline nanobrushes are produced at low concentrations of formic acid, the granular silver particles covered with polyaniline dominate at high acid concentrations.  相似文献   

20.
《Ceramics International》2023,49(8):12054-12060
The addition of V2CTx two-dimensional materials as auxiliary fillers in conductive adhesives can increase the contact area between conductive particles inside the matrix effectively reducing the resistivity of epoxy resin conductive adhesives. The V2CTx/Ag/rGO/MWCNTs fillers inside the epoxy resin will connect more Ag-clad Cu particles to form a conductive pathway, but its excessive content will be aggregated inside and thus increase the resistivity of the conductive adhesive. The volume resistivity of ECAs increases from 4.4 × 10−6 Ω m to 1.15 × 10−5 Ω m when the V2CTx/Ag/rGO/MWCNTs content of 0.1% increases to 0.34%. The Ag-clad Cu particles are interconnected inside the epoxy resin to form an electron transfer network. Inside the epoxy resin substrate Ag-clad Cu particles and V2CTx/Ag/rGO/MWCNTs interconnects to form a larger conductive network, so that the conductive adhesive shows good conductive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号