首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李神子  龙跃  潘向阳  杜培培  邢磊 《钢铁》2020,55(9):16-22
 高炉炉料中适宜的w(MgO)/w(Al2O3)可以提高炉渣的冶金性能,有利于高炉的冶炼,以达到增产、节能和降耗的目的。为探究MgO质量分数对复合炉料性能的影响,在试验过程中分别改变复合炉料内烧结矿、球团矿的w(MgO)/w(Al2O3),使用高温熔滴炉检测其熔滴性能,并对未滴落物进行XRD、SEM-EDS检测,探究渣中成分和分布规律,最终得到合理的MgO配分结构。试验结果表明,烧结矿中w(MgO)/w(Al2O3)由0.8增加至1.2的过程中,滴落温度先减小后增大,软熔带位置不断下移并呈现先变窄后变宽的趋势,镁硅钙石和镁黄长石的含量不断增大,而尖晶石和方镁石含量在w(MgO)/w(Al2O3)超过1.0后逐渐增大;球团矿中w(MgO)/w(Al2O3)由1.39增加至2.09的过程中,熔化区间先减小后增大,软熔带先上移后下降。烧结矿中w(MgO)/w(Al2O3)为1.0、球团矿中w(MgO)/w(Al2O3)为1.74时,熔滴特征值为95.55 kPa·℃,复合炉料熔滴性能最佳,有利于高炉顺行。  相似文献   

2.
董方  邓浩华  郄俊懋 《特殊钢》2014,35(2):9-12
使用CQKJ-Ⅲ矿渣熔化温度测定仪和MTLQ-RD-1300半球熔点熔速综合测定系统,通过正交实验研究碱度、BaO(6%~14%)、CaF2(0~10%)和Al2O3(18%~28%)对基础精炼渣系CaO-SiO2-Al2O3一MgO-CaF2半球熔点(熔化温度)和熔化速率的影响。结果表明,对高碱度精炼渣熔点的影响因素为CaF2、BaO、Al2O3、碱度(R)依次减弱;对熔速的影响因素为碱度(R)、Al2O3、CaF2、BaO依次减弱,提高精炼渣碱度同时添加适量的Al2O3可以降低精炼渣的熔点和提高熔速,BaO、CaF2的加入也能不同程度的降低精炼渣的熔点,提高精炼渣的熔速;当碱度为4~5,BaO 10%~14%,Al2O3 23%~28%,CaF2 5%~10%时,精炼渣的熔点比较低(约1340℃),熔速比较大(熔化时间<50 s);减小高碱度精炼渣的粒度可以降低熔渣的熔点和提高熔化速率。  相似文献   

3.
研究了B2O3对低碱度[(CaO)/(SiO2)=3~4]和高碱度[(CaO)/(SiO2)=5~7.5]两个系列CaO基精炼渣熔化温度的影响。结果表明,用B2O3比用Al2O3和CaF2更有效降低CaO基精炼渣系的熔化温度,对低碱度渣系,B2O3替代渣中的部分CaF2、Al2O3以及SiO2,都能有效降低渣的熔化温度;对高碱度渣系,B2O3替代CaF2作助熔剂时,可实现在高(CaO)/(SiO2)和(CaO)/(Al2O3)下造具有超低熔化温度的CaO基精炼渣,既可提高造渣速度,又可提高渣的脱硫磷能力和吸收硅、铝脱氧产物的能力。  相似文献   

4.
为明确转炉吹炼不同阶段炉渣黏流特性变化机理,结合不同时期典型的转炉炉渣成分,利用FactSage热力学模拟软件研究了碱度、FeO、MgO、MnO和Al2O3的变化对CaO-SiO2-FeO-MgO-MnO-Al2O3系转炉渣黏度的影响,并结合生产实际给出了转炉冶炼不同阶段适宜的炉渣碱度、炉渣中合理的FeO、MgO、MnO及Al2O3含量。研究结果表明,不同碱度条件下转炉渣黏度随温度升高而逐渐减小,不同温度条件下转炉渣黏度随碱度增大呈现先增大后减小的趋势。炉渣黏度受FeO、MgO和Al2O3含量变化影响较大,受MnO含量变化影响相对较小。炉渣流动性主要与炉渣结构的聚合度和渣中固相质量分数有关,FeO、MgO和Al2O3含量增加可以破坏渣中硅酸盐聚合体的网络结构,多余MgO易导致渣中高熔点固相析出;Al2O3...  相似文献   

5.
Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧化物的行为,是冶金熔渣中常见的一种组元.以超高碱度保护渣(综合碱度R=1.75)为研究对象,分析了Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律.研究结果显示:渣中Al2O3质量分数每增加1%,熔化温度上升5℃左右,转折温度下降12℃左右,开始结晶温度平均下降11℃左右.平均结晶速率随渣中Al2O3质量分数的增加而减小.且随着Al2O3质量分数的增加,保护渣结晶矿相中晶体比例逐渐降低,但晶体保持枪晶石的种类不变.  相似文献   

6.
采用三元二次正交设计方法,利用熔体物性综合测定仪对碱度(CaO/SiO2)1.2~6.0,MgO 1.9%~10%,Al2O3 6%~29.1%的CaO-MgO-SiO2-Al2O3四元精炼渣系的黏度进行了测试和研究。实验结果表明.该四元渣1500℃的黏度为0.129~4.612 Pa·s,随碱度增加,该精炼渣系的黏度先略有下降后快速增加;随MgO含量增加,该渣系黏度呈现快速降低后略有上升的趋势;随Al2O3含量增加,该渣系黏度快速降低。综合来看,碱度为4~5、MgO 4.5%~5.5%、Al2O3 24%~27%时,该精炼渣系黏度(≤1.0 Pa·s)较为适宜,具有较好的流动性,促进渣-金之间的反应,提高吸附夹杂物的能力,并为脱硫创造有利的动力学条件。  相似文献   

7.
 为了掌握高Al2O3条件下(w(Al2O3)为15%以上)高炉渣系的熔化特性,利用差式扫描量热仪分析了不同w(MgO)/w(Al2O3)、碱度(R)以及w(Al2O3)对高铝高炉渣的熔化温度及熔化热的影响。试验结果表明,炉渣熔化开始温度为1 248~1 291 ℃、熔化结束温度为1 432~1 485 ℃、熔化热为137~211 J/g;当w(Al2O3)=15%、高w(MgO)/w(Al2O3)时,发生了共晶逆反应,导致高炉炉渣熔化开始温度逐渐降低,但由于高炉炉渣的液相线温度基本未变,所以炉渣熔化结束温度基本未发生改变;w(Al2O3)为20%时,随着w(MgO)/w(Al2O3)的增加,炉渣中易生成熔点较高的镁铝尖晶石,导致高炉炉渣熔化开始温度逐渐增大,与此同时,炉渣液相线温度逐渐降低,导致炉渣熔化结束温度逐渐降低;随着碱度R的增加,高炉炉渣中生成了具有高熔点的化合物、炉渣的液相线温度升高,使得高炉炉渣的熔化开始温度逐渐增加、炉渣熔化结束温度逐渐升高;随着w(Al2O3)的增加,发生了共晶逆反应,故炉渣的熔化开始温度逐渐降低,而随着w(Al2O3)的增加,炉渣中键能较大的Al—O键增多,需要在更高温度下才能实现炉渣的最终熔化,即熔化结束温度逐渐增加;随着w(MgO)/w(Al2O3)、R以及w(Al2O3)的增加,炉渣熔化热逐渐增多。分析认为,随着R的增加,炉渣中有高熔点化合物的生成,熔化热增加;随着炉渣中w(Al2O3)的增加,炉渣中Al—O键增多,解聚破坏熔渣结构消耗的热量增多;而随着w(MgO)/w(Al2O3)增加,高熔点化合物的生成或熔化开始温度降低,造成熔化热增加。  相似文献   

8.
基于混料试验中单纯形质心法建立了CaO-SiO2-Al2O3-MgO-2%TiO2渣黏度和熔化性能预测模型,利用预测模型、FactSage和X射线衍射(XRD)研究了不同w(Al2O3)含钛炉渣的冶金性能,并探讨了高Al2O3炉渣中w(MgO)/w(Al2O3)对黏度和熔化性能的影响。结果表明,炉渣黏度和熔化性能预测模型具有较高的精度,误差分别小于5%和2%。随着Al2O3质量分数由10%增加至18%,黏度(η)、熔化性温度(tM)和液相线温度(tL)均升高;低熔点相黄长石(Melilite)开始析出温度和析出量逐渐增大,高熔点相钙钛矿(CaTiO3)和低熔点相硅灰石(CaSiO3)开始析出温度先增大后减小,还析出了少量高熔点相尖晶石。当A...  相似文献   

9.
从Al2O3活度和夹杂物成分两方面来研究精炼渣对夹杂物的影响.采用Factsage软件对CaO-Al2O3-SiO2-MgO(8%)-CaF2(8%)炉渣中Al2O3活度进行了计算,并研究了碱度和(MgO)含量对Al2O3活度的影响.当炉渣碱度从1.0增加到2.0时,炉渣中Al2O3活度随着炉渣碱度的增加而降低;当炉渣碱度从2.0增加到3.8时,Al2O3活度变化幅度很小;(MgO)质量分数分别为5%和8%的渣,Al2O3活度差距较小;在碱度高的炉渣中[Al]s容易被从炉渣还原到钢水中.在使用高碱度精炼渣的盘条中发现许多含有MgO的硬性夹杂物,并对此进行了分析,最后得出最适宜的炉渣碱度为2.5~3.0.   相似文献   

10.
研究了TiO2含量、Al2O3含量以及二元碱度(CaO/SiO2)对TiO2-Al2O3-CaO-SiO2低碱度高钛渣黏度的影响.实验采用旋转柱体法在1633-1873K温度范围内对渣系熔体黏度进行了测量.当TiO2质量分数为23%-43%、Al2O3质量分数为3%-12%和二元碱度为0.3-0.7时,钛渣熔体黏度随TiO2含量和碱度的增加而降低,随Al2O3含量的增加而增加.通过对转底炉-电炉熔分过程渣系脱硫能力计算,得知在低碱度高钛渣中TiO2属于酸性.依据黏度测量数据和对TiO2属性的界定,通过修正Urbain模型建立了低碱度高钛渣的熔体黏度预报模型.模型预测结果误差为11%,证明新模型对于低碱度高钛渣的黏度具有良好的预报效果.   相似文献   

11.
针对某石油套管钢管壁内缺陷,采用扫描电镜?能谱仪(SEM-EDS)分析,并结合FactSage8.0软件计算进行研究,结果表明缺陷纵向面主要由浅条纹及深条纹组成,浅条纹处存在大量MgO·Al2O3夹杂物,深条纹处有大量的Al2O3、MgO·Al2O3、CaO·Al2O3·SiO2等夹杂物聚集在一起。缺陷横截面上的夹杂物主要为CaO·Al2O3·SiO2、CaO·Al2O3·MgO和CaO·Al2O3·MgO·SiO2 3类。推测钢管壁内缺陷形成机理主要为:①大包钢水在浇注末期钢水卷带钢包渣进入中间包钢水中,该渣滴随后吸附钢中高Al2O3含量的微细xAl2O3·yCaO或Al2O3夹杂物,导致渣滴中的Al2O3含量升高;②大包钢水在真空脱气(VD)精炼过程大Ar气搅拌下卷入了钢包渣,该渣滴随后吸附钢中的微细Al2O3夹杂物,导致渣滴中的Al2O3含量升高;以上两种形式形成的渣滴在凝固冷却过程中,转变为CaO·Al2O3·SiO2, CaO·Al2O3·MgO,CaO·Al2O3·SiO2·MgO 3种类型的夹杂物。圆管坯在穿孔变形过程中,在纵向拉应力和横向切应力作用下,使卷入的大型渣滴沿纵向及横截面延伸扩展,最终形成钢管壁内的缺陷。   相似文献   

12.
通过钢渣平衡实验研究,分析了精炼渣成分对82B钢液T.O和点状不变形夹杂物成分的影响;通过Fact-Sage热力学计算,得出硅锰脱氧82B钢中MgO·Al2O3尖晶石夹杂的生成条件.结果表明:降低精炼渣碱度、提高Al2O3含量均利于钢水全氧含量的降低;随着Al2O3含量的提高,复合氧化物夹杂的熔点升高.当熔渣碱度为0.93、Al2O3含量为5.1%时,夹杂物熔点最低;熔渣碱度为1.14、Al2O3含量为25.6%时,高Al2O3活度的熔渣导致MgO·Al2O3尖晶石夹杂生成;熔渣碱度为1.97、Al2O3含量为25.9%时,由于碱度升高,钢中无MgO·Al2O3尖晶石类夹杂物生成;熔渣碱度为0.93、Al2O3含量为5.1%时,由于Al2O3含量降低,钢中无MgO·Al2O3尖晶石类夹杂物生成,且夹杂物熔点较低.   相似文献   

13.
为了解决高铝矿高炉冶炼时炉渣流动性差、渣铁难分、软熔带透气性变差等问题,基于邯钢高炉炉渣成分变化区间,结合理论计算和试验,研究了Al2O3含量对炉渣成分、性能的影响,获得了炉渣中Al2O3质量分数为15%~18%时适宜的镁铝比(w(MgO)/w(Al2O3))和二元碱度调控区间,并将研究结果用于指导邯钢高炉高铝矿冶炼。研究结果表明,在Al2O3质量分数由15%增加到16%过程中,炉渣黏度随炉渣结构复杂化而逐渐增加,当温度为1 500℃时炉渣黏度一般小于0.4 Pa·s,不会影响高炉正常冶炼;当Al2O3质量分数由16%增加到17%时,由于炉渣结构不断复杂化以及高熔点镁铝尖晶石相的析出,造成炉渣黏度陡增,此时炉渣二元碱度为1.25~1.30,渣中镁铝比为0.4~0.6,能够保证邯钢2号、8号高炉的炉况稳定和冶炼指标。当Al2O3...  相似文献   

14.
钢的电渣重熔过程主要发生在电极熔化末端熔滴形成阶段,通过渣对钢中夹杂物吸附和溶解的渣洗作用达到提纯和净化钢液的目的,而渣-钢-夹杂物的界面张力密切影响这一过程。本文根据国内外关于电渣重熔过程常用含氟渣系界面性质的研究成果,分析了渣中CaF2、CaO、Al2O3、MgO、Na2O、SiO2等组元及温度对熔渣表面张力的影响规律及内在机理,同时总结了渣-钢界面张力随渣、钢成分及熔体温度、熔渣碱度的变化规律。建立电渣重熔用含氟渣系界面性质参数的经验公式和计算模型是该领域的研究方向。  相似文献   

15.
张芳  王艺慈  董方  张岩 《特殊钢》2010,31(4):28-30
用B2O3作为含氟渣中CaF2的替代熔剂,在保证两结晶器保护渣具有相近粘度和熔化温度的基础上,研究了成分为(%):31.1~35.5CaO、33.9~38.5SiO2、12Al2O3、3MgO、5Na2O、6~15CaF2的含氟结晶器保护渣和(%):33.5~35.5CaO、36.5~39.5SiO2、4Al2O3、5MgO、8~15Na2O、2Li2O、2~6B2O3的无氟结晶器保护渣的结晶温度、结晶能力以及对结晶器控制传热的影响。结果表明,8Na2O-6B2O3无氟渣与5Na2O-15CaF2的含氟渣有相近的粘度和熔化温度,并对结晶器控制传热有相似的作用。   相似文献   

16.
为研究中等碱度精炼渣中Al2O3含量对钢洁净度和夹杂物的影响,在1 873 K温度下用MgO坩埚开展了初始碱度为4、不同Al2O3含量的CaO-SiO2-Al2O3-MgO顶渣与铝脱氧钢的平衡试验。结果表明,渣-钢反应后,夹杂物类型由反应前的MgO-Al2O3-MnS复合类转变为中心为MgO-Al2O3,边部为MgO-Al2O3-SiO2-CaO(-MnO)系的包裹体复合类;形貌由边界多棱角的块状和簇群状转变为边界圆滑的类球状。随着渣中Al2O3含量的增加,夹杂物中Al2O3含量显著增加,MgO含量减少,其他组分含量变化不大;夹杂物尺寸呈现增大的趋势;夹杂物数量密度增大,钢的洁净度降低。该试验条件...  相似文献   

17.
采用热力学软件FactSage中的Equilib和Phase Diagram模块分别对Al2O3-CaO-MgO三元渣系的熔化性能及添加助熔剂后对渣系熔点的影响进行理论分析,并实验测定渣系的实际熔点.发现渣系熔点随w(Al2O3)/w(CaO)比的升高先降低后升高,w(MgO)为4%~5%时渣系熔点最低.对于w(Al2O3)/w(MgO)>3的渣系,w(CaO)<30%时渣系熔点随w(CaO)增加而降低.22O3)/w(CaO)<2.5,w(MgO)为15%~18%时,钒铁渣中加2.29%AlCl3、4.86% Fe2O3或4.77% Na2O时均可降低原渣熔化性温度约100℃.   相似文献   

18.
精炼渣组成对钢渣硫分配比的影响   总被引:1,自引:0,他引:1  
陈跃峰  王雨 《特殊钢》2007,28(4):36-38
采用二次正交回归实验设计方法在中频感应炉内进行碱度R(CaO/SiO2)2~7的CaO-SiO2-MgO- Al2O3精炼渣系的脱硫实验,建立渣系组分与钢-渣硫分配比Ls关系的数学模型,实验渣碱度、渣指数MI (R:Al2O3)、CaF2、MgO和FeO含量对硫分配比Ls的影响。结果表明,渣碱度R 3.5~5.0、渣指数MI 0.25~0.40时脱硫效果较好;精炼渣最佳组分为(%):9CaF2、8MgO、13Al2O3、<0.5FeO,R值=4。  相似文献   

19.
吴萧萧  习在辉  何生平  王强强  张旭彬 《钢铁》2023,(8):110-119+137
Li2O能有效改善连铸保护渣的熔化和流动性能,常用于高品质低碳钢板坯连铸保护渣的重要助熔剂。然而,近两年受下游需求强劲的影响,碳酸锂价格持续走高,增加了连铸坯生产成本。首先开展实验室研究,重点讨论了不同碱度下Li2O对保护渣黏度和熔化温度的影响;然后分阶段开展了4轮工业试验,试验评价效果包括,结晶器铜板热电偶温度和摩擦力曲线,吨钢渣耗量和铸坯表面质量。实验室研究结果表明,当碱度为0.65~1.25时,随着Li2O含量的增加,保护渣的熔点和黏度均呈现出降低的趋势,且黏度降低的幅度较明显。为了保证连铸顺行以及低碳钢铸坯表面质量,降低Li2O的同时需要调整渣中Al2O3、Na2O和F-的含量,以达到协调熔渣的熔化和流动性能以及吸收Al2O3夹杂后性能的稳定性。优化渣的碱度为0.98、黏度为0.26 Pa·s、熔点为1 130℃,均在低碳钢保护渣性能要求范围内。原保护渣与优化渣...  相似文献   

20.
铝镇静钢连铸保护渣对Al2O3夹杂物的吸收能力   总被引:1,自引:0,他引:1  
釆用Al2Q3溶解速率测定仪测定了 CaO-SiO2-Na2O-CaF2-Al2O3-MgO连铸保护渣系的抱@溶解 速率。通过建立Al2O3溶解速率和渣成分关系的回归正交设计模型,精确预测铝镇静钢连铸保护渣的夹杂物 吸收能力,并通过建立的非线性规划模型对该保护渣进行优化设计。结果表明,在CaO/SiQ = 1.15,Na2CO30.0%,CaF2 20.0%,2.0%, MgO 8.0%时,连铸保护渣的溶解速率的最大值为1.73 x 10-3 kg·m-2 ·s-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号