首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。  相似文献   

2.
为解决夜间场景下视频监控目标检测在实际应用时准确率不高这一问题,提出改进的YOLOv5算法。首先,建立了真实夜间场景目标的数据集,该数据集有2000张图像,分为了机动车、非机动车和车牌三个类别,以8∶2的比例均匀随机分为训练集和测试集,将夜间目标的图像放入改进的YOLOv5模型中训练,最终达到在夜间检测目标的目的;改进的YOLOv5利用了K-means++聚类算法生成自适应锚框,提高对夜间目标样本的聚类效率。其次,将改进的CBAM注意力机制与特征提取网络进行融合以获取夜间目标的重要特征。最后,将Bottleneck替换成GSBottleneck模块,利用GSConv轻量化的优势减少网络模型的计算量与参数量。结果表明,通过原YOLOv5网络模型算法训练后得到的mAP值为86.69%,改进后的YOLOv5网络模型算法训练后得到的mAP值为91.98%,三种被检测类别:机动车、非机动车和车牌的检测准确精度与原版算法相比分别提升了2.00、6.66、7.19个百分点,改进的YOLOv5网络模型可以为夜间场景下车辆特征的检测提供较好的技术支持。  相似文献   

3.
针对遥感图像中背景复杂目标、车辆小导致的成像模糊的目标漏检问题,提出一种基于YOLOv5s的改进模型。改进模型设计一种新的主干网络结构:改进模型的主干特征提取选用RepVGG网络,同时在主干网络中加入注意力机制CoordAttention来提高模型小目标的感知能力。增加多尺度特征融合,提高改进模型对于小目标的检测精度,边框回归的损失函数选择使用DIoU,帮助改进模型实现更加精准定位。实验结果表明,改进后的YOLOv5模型在遥感图像的目标检测,相较于原始模型在小目标车辆中检测精度提升5.3个百分点,与Faster R-CNN相比mAP提升16.88个百分点。改进后的模型与主流的检测算法相比能有较大的检测精度提升,相较于原始的YOLOv5s模型在遥感图像小车辆检测有更好的检测精度。  相似文献   

4.
对街道场景视频或图像数据中的人和车辆进行实时检测是导盲系统中难度很高的任务,针对街道目标检测任务,提出了一个根据目标检测技术YOLOv3算法改进的街道场景检测算法YOLOv3-Street,分别在传统YOLOv3算法的网络框架以及数据增强方式上进行了改进。针对传统的主特征提取网络Darknet53采用CSPDarknet53改进结构,实现更丰富的梯度组合,同时减少计算量;引入特征金字塔SPP和PAN结构,增加网络感受野;使用Mosaic数据增强避免过拟合。实验过程中采用MIT的CBCLStreetScenes数据集并对3547张数据中的汽车,行人等目标进行训练和测试。结果表明,所提出的街道场景检测算法,能够在不受天气、光照、角度等条件约束实时速度达到69FPS,mAP为79.35%,实现了街道场景检测实时性与精度的良好平衡,提升了盲人出行的安全指数。  相似文献   

5.
针对自动驾驶场景,现有车辆检测算法对小目标车辆检测效果不好,导致车辆检测精度不高的问题,该文提出改进YOLOv4算法。首先增加小目标检测层,降低小目标车辆的漏检率;然后使用EIoU(efficient intersection over union)损失函数替换CIoU(complete intersection over union)损失函数,降低算法的边界框回归损失,提高算法的检测精度。在数据预处理阶段采用Mosaic数据增强的方法提高小目标车辆的训练效果,以及使用K-Means聚类算法选出更合适的检测锚框。在KITTI数据集上实验,改进算法平均检测精度为95.84%,检测速度为37.12帧/s,相比YOLOv4算法,平均检测精度提高2.84%。实验结果表明,改进YOLOv4算法达到了提高车辆检测效果的目的。  相似文献   

6.
针对智能驾驶中动态目标检测易受雾天等恶劣天气影响,以及原始YOLOv3目标检测算法应用于行人车辆检测时精度低、定位准确率低及漏检率高等问题,提出一种基于改进YOLOv3和数据增强的雾天行人车辆检测方法。首先,以Cityscapes数据集为基础,通过大气散射模型及清晰图片的深度信息人工生成3种浓度的FoggyCityscapes,用以扩充样本数量。其次,通过改进K-means聚类算法生成适用于检测车辆与行人的先验框,同时,使用软非极大值抑制(softnon-maximumsuppression,Soft-NMS)优化对重叠目标的检测,进一步提高模型检测精度。实验结果表明,相较于原模型,该方法在3种浓度的FoggyCityscapes数据集上的平均精度均值(meanaverageprecision,m AP)分别提高了7.73%、13.22%和21.51%,能够快速准确地检测雾天场景的行人和车辆目标。  相似文献   

7.
低照度的夜间路况复杂,现有夜间车辆识别相关研究较少,且存在识别方法实时性不高、过多占用硬件资源等不足。针对夜间场景车辆识别干扰因素较多、检测效果不佳的问题,提出一种基于YOLOv4的Dim env-YOLO车辆目标检测算法。利用MobileNetV3网络替换原始YOLOv4中的主干网络,以减少模型参数量。在改进的YOLOv4模型上使用图像暗光增强方法 ,提高车辆目标在昏暗环境中的可识别性。在此基础上,引入注意力机制加强特征信息选择,同时利用深度可分离卷积降低网络计算量。选取北京部分道路的夜间场景图片自制数据集并进行实验验证,结果表明,在存在高斯噪声、模糊扰动、雨雾夜晚等情况下,Dim env-YOLO算法的测试结果较稳定,对于照度低于30 lx的昏暗条件下的车流,其检测mAP值达到90.49%,对于最常见的轿车类别,mAP值达到96%以上,优于Faster-RCNN、YOLOv3、YOLOv4等网络模型在昏暗光照条件下的检测效果。  相似文献   

8.
无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模块引入到YOLOv5s算法中,提高网络的特征提取能力;引入双锥台特征融合(bifrustum feature fusion,BFF)结构,提高算法对较小目标的检测检测精度;将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高定位精度。实验结果表明,改进后的YOLOv5s取得了86.3%的平均均值精度(mAP),比原算法YOLOv5s提高了16.8个百分点,在复杂背景下仍能显著提升无人机图像目标检测性能。  相似文献   

9.
在真实场景下准确实时检测小目标交通标志对自动驾驶有重要意义,针对YOLOv5算法检测小目标交通标志精度低的问题,提出一种基于改进YOLOv5的小目标交通标志实时检测算法。借鉴跨阶段局部网络思想,在YOLOv5的空间金字塔池化上设置新的梯度路径,强化特征提取能力;在颈部特征融合中增设深、浅卷积特征的可学习自适应权重,更好地融合深层语义和浅层细节特征,提高小目标交通标志的检测精度。为验证所提算法的优越性,在TT100K交通标志数据集上进行了实验验证。实验结果表明所提算法在小目标交通标志上的平均精度均值(mean average precision,mAP)为77.3%,比原始YOLOv5提升了5.4个百分点,同时也优于SSD、RetinaNet、YOLOX、SwinTransformer等算法的检测结果。所提算法的运行速度为46.2 frame/s,满足检测实时性的要求。  相似文献   

10.
在驾驶场景中,针对行人间的遮挡和尺度多变现象导致的检测精度较低、模型参数量过大和难以部署到移动端等问题,提出了一种基于YOLOv5s模型的轻量级实时行人检测模型LPD-YOLO。首先,在特征提取部分采用MES Net替换原主干网络,并在主干网络中嵌入注意力模块SA,增强网络特征提取能力;其次,在特征融合部分采用DS-ASFF结构改进原PANet,使其充分融合不同尺寸的特征图;然后,采用GS卷积代替特征融合网络中的部分标准卷积,在不影响精度的条件下,进一步减少模型参数量和计算量;最后,在预测部分使用OTA标签分配策略结合α-IOU改进原损失函数,加速模型收敛。实验结果表明,该模型相较于YOLOv5s,参数量减少了81.2%,浮点运算量降低了46.3%,模型大小减小了75.8%,检测精度提高了3.3%。单幅图像检测速度达到了13.2 ms,更好地满足了驾驶场景下密集行人的实时检测要求。  相似文献   

11.
针对无人机航拍图像中目标小、尺度不一和背景复杂等导致检测精度低的问题,提出一种基于改进YOLOv5的无人机航拍图像目标检测算法DY-YOLOv5。该算法在检测头部分利用具有多重注意力机制的目标检测头方法Dynamic Head,提升检测头在复杂背景下的检测表现。在原模型neck部分增加一次上采样和Concat操作,并执行一个包含极小、小、中目标的多尺度特征检测,提升模型对中、小目标的特征提取能力。引入密集卷积网络DenseNet,将其与YOLOv5s主干网络的C3模块进行融合,提出C3_DenseNet模块,以加强特征传递并预防模型过拟合。在VisDrone2019数据集上应用DY-YOLOv5算法,平均精度均值(mAP)达到了43.9%,较原YOLOv5算法提升了11.4个百分点。召回率(Recall)为41.7%,较原算法提升了9.0个百分点。实验结果证明,改进算法显著提高了无人机航拍图像目标检测的精度。  相似文献   

12.
针对雾天场景下目标检测算法精度较低、模型复杂度较高,提出一种基于YOLOv5的轻量级雾天目标检测方法。采用感受野注意力模块(RFAblock)通过交互感受野特征信息,对感受野添加注意力机制,提高特征提取能力;采用轻量化网络Slimneck作为颈部结构,在保持精度的同时降低模型参数和复杂度;在损失函数中引入真实框与预测框之间的角度向量,提高训练速度和推理的准确性;采用PNMS(precise non-maximum suppression)改进候选框选择机制,降低车辆遮挡情况下的漏检率。在真实雾天数据集RTTS和合成雾天数据集Foggy Cityscapes上进行测试,实验结果表明,与YOLOv5l相比mAP50分别提高了4.9和3.5个百分点,模型参数量仅为YOLOv5l的54.6%。  相似文献   

13.
针对遥感图像目标尺寸小、目标方向任意和背景复杂等问题,在YOLOv5算法的基础上,提出一种基于几何适应与全局感知的遥感图像目标检测算法。首先,将可变形卷积与自适应空间注意力模块通过密集连接交替串联堆叠,在充分利用不同层级的语义和位置信息基础上,构建一个能够建模局部几何特征的密集上下文感知模块(DenseCAM);其次,在骨干网络末端引入Transformer,以较低的开销增强模型的全局感知能力,实现目标与场景内容的关系建模。在UCAS-AOD和RSOD数据集上与YOLOv5s6算法相比,所提算法的平均精度均值(mAP)分别提高1.8与1.5个百分点。实验结果表明,所提算法能够有效提高遥感图像目标检测的精度。  相似文献   

14.
基于视觉图像的城市道路车辆检测是计算机视觉领域重要的研究课题之一。目前,其在白天环境下已取得良好的成果,但夜间环境的车辆检测问题仍存在许多研究难点。文章主要基于深度学习中目标检测(YOLOv5)算法进行改进,使用K-Means++算法获取先验框,提高收敛速度和检测准确率,使用空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)替换原模型的快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF),提高了召回率和平均准确率。实验表明,提出的YOLOv5x+ASPP较原网络YOLOv5x在驾驶数据集BDD100K上平均准确率提高了2.1个百分点。  相似文献   

15.
目的 行人检测是目标检测中的一个基准问题,在自动驾驶等场景有着较大的实用价值,在路径规划和智能避障方面发挥着重要作用。受限于现实的算法功耗和运行效率,在自动驾驶场景下行人检测存在检测速度不佳、遮挡行人检测精度不足和小尺度行人漏检率高等问题,在保证实时性的前提下设计一种适合行人检测的算法,是一项挑战性的工作。方法 本文旨在解决自动驾驶场景中耗时长、行人遮挡和小尺度行人检测结果精度低的问题,提出了一种尺度注意力并行检测算法(scale-aware and efficient object detection,Scale-aware EfficientDet):在特征提取与检测中使用了EfficientDet的主干网络,保证算法效率和功耗的平衡;在行人遮挡方面,为了提高模型对遮挡现象的检测精度,引入了可以增强行人与其他物体之间特征差异的损失函数;在提高小目标行人检测精度方面,采用scale-aware双路网络算法来增加对小目标行人的检测精度。结果 本文选择Caltech行人数据集作为对比数据集,选取YOLO(you only look once)、YOLOv3、SA-FastRCNN(scale-aware fast region-based convolutional neural network)等算法进行对比,在运行效率方面,本文算法在连续输入单帧图像的情况下达到了35帧/s,多图像输入时达到了70帧/s的工作效率;在模型精度测试中,本文算法也略胜一筹。本文算法应用于2020年中国智能汽车大赛中,在安全避障环节皆获得满分。结论 本文设计的尺度感知的行人检测算法,在EfficientDet高性能检测器的基础上,通过结合损失函数、scale-aware双路子网络的改进,进一步提升了本文检测器的鲁棒性。  相似文献   

16.
机坪特种车辆作为航班保障服务的重要一环,其种类多,形状各异;目前已有的车辆检测算法在识别机坪特种车辆时检测精度不高,在遮挡时无法检测;针对于此问题,提出了一种基于改进YOLOv5s的机坪特种车辆检测算法;为了在机坪特种车辆检测中快速、准确的定位感兴趣区域,在主干网络中融合协同注意力机制;考虑到机坪监控场景下特种车辆尺度差别较大的情况,为了能够增强对不同尺度特种车辆的检测能力,提出了四尺度特征检测网络结构;为了提高检测网络多尺度特征融合能力,结合加权双向特征金字塔结构对网络的Neck部分进行改进;将改进后的算法在自建的机坪特种车辆数据集上进行训练、测试,实验结果表明,与YOLOv5s相比,改进后算法的精确度提升了1.6%,召回率提升了3.5%,平均精度mAP0.5和mAP0.5:0.95分别有2.3%和3.3%的提升。  相似文献   

17.
针对X光图像违禁品检测中的复杂背景、正负类别不平衡和漏检等问题,提出一种基于YOLOv5的X光违禁品检测算法。该算法通过在YOLOv5s骨干网络中引入Swin Transformer模块,利用局部自注意力与Shifted Window机制提升模型对X光图像全局特征的提取能力,并且在主干网络后增加空间注意力机制与通道注意力机制,以提升算法对违禁品关键特征的提取能力。引入一种自适应空间特征融合结构,缓解特征金字塔中不同层级特征图之间冲突对模型梯度的干扰。引入Focal Loss函数用于改进YOLOv5s的背景预测损失函数和分类损失函数,提升算法在正负样本与难易样本失衡情况下的检测能力。该算法在公开数据集SIXray100上的平均检测精度达到57.4%,相比YOLOv5s提高了4.5个百分点;在SIXray正样本数据集上的平均检测精度达到90.4%,相比YOLOv5s提高了2.4个百分点。实验结果表明,改进后的算法相比原始YOLOv5s算法检测精度有较大提升,证明了算法的有效性。  相似文献   

18.
基于遥感目标在密集分布和背景复杂场景中因特征提取和表达能力的不足而存在漏检和检测效果不佳的问题,提出了改进YOLOv4的遥感目标检测算法.对用于检测目标的锚框(anchor)用K-means聚类算法重新聚类来减少网络计算量;改进特征提取网络结构,引入残差连接取缔网络中连续卷积操作来提高密集目标特征提取能力;在特征提取网络中激活函数加入自适应激活与否的特征激活平滑因子,而在PANet特征融合网络结构中采用Mish激活函数,增强网络对非线性特征的提取能力,从而提升网络的特征提取能力,提高遥感目标在密集分布场景中的检测效果.将所提算法和原始的YOLOv4目标检测算法在遥感图像数据集上进行对比实验,改进YOLOv4算法在实验选用的遥感图像测试数据集上的平均准确率均值(mAP)达到85.05%,与YOLOv4算法相比,mAP提升了5.77个百分点.实验结果表明,在单目标密集分布和多目标混合分布等背景复杂条件下,改进YOLOv4算法具有更好的检测效果.  相似文献   

19.
基于遥感目标在密集分布和背景复杂场景中因特征提取和表达能力的不足而存在漏检和检测效果不佳的问题,提出了改进YOLOv4的遥感目标检测算法.对用于检测目标的锚框(anchor)用K-means聚类算法重新聚类来减少网络计算量;改进特征提取网络结构,引入残差连接取缔网络中连续卷积操作来提高密集目标特征提取能力;在特征提取网络中激活函数加入自适应激活与否的特征激活平滑因子,而在PANet特征融合网络结构中采用Mish激活函数,增强网络对非线性特征的提取能力,从而提升网络的特征提取能力,提高遥感目标在密集分布场景中的检测效果.将所提算法和原始的YOLOv4目标检测算法在遥感图像数据集上进行对比实验,改进YOLOv4算法在实验选用的遥感图像测试数据集上的平均准确率均值(mAP)达到85.05%,与YOLOv4算法相比,mAP提升了5.77个百分点.实验结果表明,在单目标密集分布和多目标混合分布等背景复杂条件下,改进YOLOv4算法具有更好的检测效果.  相似文献   

20.
针对目前复杂交通监控场景下车辆检测精度不足、检测速度慢的问题,提出一种基于YOLOv8模型的轻量级车辆检测算法。采用FasterNet替换YOLOv8的骨干特征提取网络,减少了冗余计算和内存访问,提高了模型的检测精度和推理速度;在Backbone和Neck部分添加SimAM注意力模块,在不增加原始网络参数的同时增强了目标车辆的重要特征,提高了模型的特征融合能力;针对密集车流下小尺寸车辆检测效果不佳的问题,添加小目标检测头,更好地捕获小尺寸车辆的特征和上下文信息;使用可自适应调整权重系数的Wise-IoU作为改进模型的损失函数,提升了边界框的回归性能和检测的鲁棒性。在UA-DETRAC数据集的实验结果表明,相较于原模型,改进方法在交通监控系统中能够达到较好的检测精度和速度,mAP和FPS分别提高了3.06个百分点和3.36%,有效改善了复杂交通场景下小目标车辆检测效果不佳的问题,并在精度和速度之间取得了很好的平衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号