首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
A series of multiaxial ratcheting–fatigue interaction tests have been carried out on Sn–3Ag–0.5Cu lead-free solder specimens. All tests were conducted under cyclic shear strain with the constant axial stress at the room temperature with the shear strain rate of 5 × 10−3 s−1. It was found that the ratcheting strain increased with increasing axial stress and shear strain amplitude while the fatigue life decreased at the same time. The ratcheting strain rate was linear with axial stress in double logarithmic coordinate. The Ohno–Wang II constitutive model was employed to simulate the stress–strain responses. Several fatigue life prediction models were applied to predict the multiaxial ratcheting–fatigue life of the Sn–3Ag–0.5Cu lead-free solder. The Gao–Chen model which adopted the maximum shear strain and the ratcheting strain rate as the damage parameter predicted the multiaxial ratcheting fatigue life well.  相似文献   

2.
Effect of prestrain ranging between 2.5 and 15 percent on tensile properties, and ratcheting behaviour of an interstitial free steel has been studied at two different stress combinations. It is found that while yield strength increases in two distinctly different stages, the increase of tensile strength follows perfect linear relationship with increase in the amount of prestrain. The ratcheting strain accumulation direction during initial stage of asymmetric cyclic loading at constant tensile mean stress depends upon imposed maximum stress and the amount of prestrain. Number of cycles for accumulation of 16.30 pct true ratcheting strain increases with the amount of prestrain following perfect exponential relationships for both the stress combinations; but it increases in a perfectly bilinear manner with tensile yield strength of prestrained specimens. With 16.30 pct accumulated ratcheting strain the amount of back stress is found as 110 MPa irrespective of the amount of prestrain. Marginal variation in post-ratcheting tensile properties as a function of tensile prestrain has been observed.  相似文献   

3.
Tensile and fatigue mechanical behavior of wrought aluminum alloy 2198-T351 is examined and compared against 2024-T3 that is currently used in aerostructures. Experimental fatigue tests were carried out under constant amplitude stress ratio R = 0.1 and respective stress–life (SN) diagrams were constructed for both alloys. Fatigue behavior of both alloys is described with varying parameters being the percentage of fatigue life as well as the effect of maximum applied stress as a function of ultimate tensile strength. It was found that fatigue endurance limit of AA2024-T3 is approximately 40% below its yield stress, while only 9% below for the AA2198-T351. The latter was found to be superior in the high cycle fatigue and fatigue endurance limit regimes, especially when considering specific mechanical properties. Absorbed energies per fatigue cycle as well as dynamic stiffness of the fatigue hysteresis loop were calculated and plotted against the number of fatigue cycles and with varying maximum applied stress; both parameters are continuously decreasing due to the combination of hardening effect and micro-cracking in AA2024-T3, while this was the case only for the high applied stresses regime in AA2198-T351. Cyclic stress strain (CSS) curves were constructed and proved that work hardening exponent of AA2198-T351 is substantially decreasing with increasing fatigue life.  相似文献   

4.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

5.
The tensile and fatigue behavior of superelastic shape memory alloy (SMA) bars heat-treated at three different temperatures were examined. Low cycle fatigue tests at variable load rates were carried out to determine the effect of stress and frequency on residual strain and energy dissipation in a fatigue cycle. The mechanism of energy dissipation was studied by monitoring the temperature changes in the fatigued samples as a function of applied stress and frequency of testing. Results from the tensile tests revealed that the stress for the Austenite to Martensite transformation decreased from 408 MPa to 204 MPa with an increase in temperature of heat treatment from 300 to 450 °C. The ultimate strength of the SMA increased from 952 MPa to 1115 MPa when the heat treatment temperature was increased from 300 to 450 °C. Fatigue testing prior to conducting the tensile test decreased the ultimate strength of the SMA and also reduced the failure strain. The energy dissipation in fatigue tests was found to decrease as test frequency increased from 0.025 Hz to 0.25 Hz and the change in sample temperature during the test at the lower test frequency was found to be considerably higher than at the higher frequency.  相似文献   

6.
This paper presents a general theory for the estimations of an entire fatigue curve in ductile materials based on the implicit gradient approach. In order to modify the slope of the Woehler curves, the material was considered non-linear. The average stress of the hysteresis loop was taken into account by means of Walker’s model. Subsequently, the implicit gradient method was adopted for the numerical evaluation of the effective stress and strain at low- and medium-cycle fatigue life and was then related to the fatigue strength of the material. The characteristic length, relating to the fatigue behaviour of the material, was considered constant for the fatigue lifetime. In order to confirm the proposed method, new experimental data were obtained, relating to axisymmetric notched specimens loaded with nominal stress ratio R = −1 and R = 0. In terms of the effective strain amplitude, evaluated by means of the implicit gradient approach, the different Woehler curves of notched specimens were summarised in a unique fatigue curve as a function of Walker’s cycle parameter.  相似文献   

7.
Strain-controlled fatigue experiments were conducted on an extruded AZ61A magnesium alloy at three strain ratios (Rɛ = −∞, −1, 0) using smooth tubular specimens. As the strain ratio decreased, stronger cyclic hardening, more asymmetric hysteresis loop, smaller stress amplitude, lower mean stress, and higher initial plastic strain amplitude were observed. These phenomena were associated with twinning in the compressive phase and detwinning in the tensile phase during cyclic deformation. At the same strain amplitude, fatigue life increased with decreasing strain ratio. The strain-fatigue life curve at each strain ratio exhibited a distinguishable kink. Such a kink point represents a demarcation point above which persistent twinning–detwinning occurs under cyclic loading. Two Smith, Watson, and Topper (SWT) fatigue criteria can predict the fatigue lives of the material at all strain ratios satisfactorily.  相似文献   

8.
This paper evaluates the fatigue life properties of low carbon grey cast iron (EN-GJL-250), which is widely used for automotive brake discs. Although several authors have examined mechanical and fatigue properties at room temperatures, there has been a lack of such data regarding brake discs operating temperatures. The tension, compression and low cycle fatigue properties were examined at room temperature (RT) and at brake discs’ working temperatures: 500 °C, 600 °C and 700 °C. The microstructure of the material was documented and analysed. Tensile stress–strain curves, cyclic hardening/softening curves, stress–strain hysteresis loops, and fatigue life curves were obtained for all the above-mentioned temperatures. It was concluded, that Young’s modulus is comparable with both tension and compression, but yield its strength and ultimate strength are approximately twice as great in compression than in tension. All the mechanical properties remained quite stable until 500 °C, where at 700 °C all deteriorated drastically. During fatigue testing, the samples endured at 500 °C on average at around 50% of cycles at room temperature. Similar to other materials’ properties, the cycles to failure have dropped significantly at 700 °C.  相似文献   

9.
The paper presents a fatigue damage accumulation model, which allows us to predict fatigue life under low cycle uniaxial loadings at elevated temperatures. The structure of the model has been based on the stress–strain curves obtained during the experimental study. The model has been verified experimentally by applying experimental studies carried out on ENAW-2024T3 aluminum alloy and 2Cr–2WVTa steel. Moreover, a comparison between the results of fatigue life prediction using the proposed damage accumulation model was done with the results obtained on the basis of various generally applied models, based on the Manson–Coffin dependency. Furthermore this paper presents the results of experimental studies carried out on the aluminum alloy ENAW 2024 T3 under uniaxial low cycle fatigue loadings in the conditions of elevated temperatures. In the course of the study, material constants and the parameters of the stress–strain curve in the range of low cycle fatigue for four levels of temperatures (20, 100, 200 and 300 °C) were set.  相似文献   

10.
Poly(ethylene terephthalate) (PET) control fibers (nominal diameter ~24 ± 3 μm) and PET fibers with embedded vapor-grown carbon nanofibers (PET-VGCNF) (nominal diameter ~25 ± 2 μm) were exposed to cyclic loading and monotonic tensile tests. The control fibers were processed through a typical melt-blending technique and the PET-VGCNF samples were processed with approximately 5 wt.% carbon nanofibers present in the sample. Under uniaxial fatigue conditions, the fibers were subjected to a maximum stress that was approximately 60% of the fracture stress of the sample at an elongation rate of 10 mm/min in uniaxial tension. The fibers were subjected to a frequency of 5 Hz. Subsequent to non-fracture fatigue conditions, the fibers were tested under uniaxial stress conditions for observation of the change in mechanical properties to assess the effects of fatigue loading. The elastic modulus, hardening modulus, fracture strength, work done, and yield strain of both PET control and PET-VGCNF samples in uniaxial tension subsequent to fatigue were shown to be dependent on the residual fatigue strains. Relative mechanical properties were used to quantify the difference in PET and PET-VGCNF samples as a function of residual strain. In most cases, the results indicated a strengthening mechanism (strain hardening effect) in the low residual strain limit for fatigued PET samples and not for fatigued PET-VGCNF samples. In comparison with the unreinforced PET sample, the PET-VGCNF fibers showed greater degradation of mechanical properties as a function of residual strain due to fatigue when cycled at 60% of the fracture stress. The effects of the fatigue process on the change in mechanical properties have been quantified and supported through existing qualitative, quantitative, and scanning electron microscopy (SEM) techniques.  相似文献   

11.
12.
The main purpose of this study is to determine, via a three dimensions Finite Element analysis (FE), the stress and strain fields at the inner surface of a tubular specimen submitted to thermo-mechanical fatigue. To investigate the surface finish effect on fatigue behavior at this inner surface, mechanical tests were carried out on real size tubular specimens under various thermal loadings. X-ray measurements, Transmission Electron Microscopy observations and micro-hardness tests performed at and under the inner surface of the specimen before testing, revealed residual internal stresses and a large dislocation microstructure gradient in correlation with hardening gradients due to machining. A memory effect, bound to the pre-hardening gradient, was introduced into an elasto–visco-plastic model in order to determine the stress and strain fields at the inner surface. The temperature evolution on the inner surface of the tubular specimen was first computed via a thermo-elastic model and then used for our thermo-mechanical simulations. Identification of the thermo-mechanical model parameters was based on the experimental stabilized cyclic tension–compression tests performed at 20 °C and 300 °C. A good agreement was obtained between numerical stabilized traction–compression cycle curves (with and without pre-straining) and experimental ones. This three dimensional simulation gave access to the evolution of the axial and tangential internal stresses and local strains during the tests. Numerical results showed: a decreasing of the tangential stress and stabilization after 40 cycles, whereas the axial stress showed weaker decreasing with the number of cycles. The results also pointed out a ratcheting and a slightly nonproportional loading at the inner surface. The computed mean stress and strain values of the stabilized cycle being far from the initial ones, they could be used to get the safety margins of standard design related to fatigue, as well as to get accurate loading conditions needed for the use of more advanced fatigue analysis and criteria.  相似文献   

13.
Effects of anisotropy and temperature on cyclic deformation and fatigue behavior of two short glass fiber reinforced polymer composites were investigated. Fatigue tests were conducted under fully-reversed (R = −1) and positive stress ratios (R = 0.1 and 0.3) with specimens of different thicknesses, different fiber orientations, and at temperatures of −40 °C, 23 °C, and 125 °C. In samples with 90° fiber orientation angle, considerable effect of thickness on fatigue strength was observed. Effect of mold flow direction was significant at all temperatures and stress ratios and the Tsai–Hill criterion was used to predict off-axis fatigue strengths. Temperature also greatly influenced fatigue strength and a shift factor of Arrhenius type was developed to correlate fatigue data at various temperatures, independent of the mold flow direction and stress ratio. Micromechanisms of fatigue failure at different temperatures were also investigated. Good correlations between fatigue strength and tensile strength were obtained and a method for obtaining strain–life curves from load-controlled fatigue test data is presented. A fatigue life estimation model is also presented which correlates data for different temperatures, fiber orientations, and stress ratios.  相似文献   

14.
The evolutions of ratcheting strains of polymethyl methacrylate (PMMA) at different temperatures and stress levels were experimentally investigated. A steady ratcheting strain growth region with a constant rate was observed in all specimens, which occupied significant part of total fatigue failure life. Experimental results also showed that the steady ratcheting growth rate varied with applied temperatures and loading. In this paper, theory of thermally activated process for glassy polymers was used to describe the plastic deformations during the cycle. Based on the correlations between ratcheting strains per cycle and hysteresis loop energy, a new ratcheting strains accumulative model for polymer materials was developed, which quantificationally elucidated the effects of temperature, loading frequency, mean stress and stress amplitude on the accumulative rate of ratcheting strains. Comparing the predications from the proposed model with experimental ratcheting strain data of PMMA, it was found that the model could describe the steady ratcheting strain accumulative behaviors under arbitrary temperatures and loading conditions exactly.  相似文献   

15.
The effects of prior oxidation on the room temperature fatigue life of coarse-grained Ni-based superalloy, RR1000, have been investigated. High cycle fatigue tests were conducted, on both machined and pre-oxidised testpieces, at room temperature at an R ratio of 0.1. The oxidation damage was produced by pre-exposures at 700 °C for either 100 or 2000 h. Pre-oxidised testpieces tended to fail with shorter fatigue lives than those obtained from the as-machined testpieces although they were also observed to outperform the as-machined test pieces at peak stress levels around 900 MPa. The chromia scale and intergranular alumina intrusions formed during pre-oxidation are prone to crack under fatigue loading leading to early crack nucleation and an associated reduction in fatigue life. This has been confirmed to be the case both below and above a peak stress level of ∼900 MPa. The better fatigue performance of the pre-oxidised specimens around this stress level is attributed to plastic yielding of the weaker γ′ denuded zone, which effectively eases the stress concentration introduced by the cracking of the chromia scale and intergranular internal oxides. This γ′ denuded zone is also a product of pre-oxidation and develops as a result of the selective oxidation of Al and Ti. Over a limited stress range, its presence confers a beneficial effect of oxidation on fatigue life.  相似文献   

16.
Effect of stress ratio on fatigue properties of a titanium alloy (TC-17) in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) were investigated by electromagnetic and ultrasonic fatigue testing. The SN curves at R = −1, 0.1, 0.5 and 0.7 at 110 Hz and 20 kHz were obtained and discussed. The effects of frequency on fatigue strength was also investigated. It was concluded that the fatigue strength with 50% fatigue failure probability at R = 0.1, 0.5 and 0.7 is lower to the Goodman line and shows a bilinear decreasing trend. Cleavage fracture of primary grains in the surface and interior initiation zone were observed. The formation of the facets induced by the basal or prismatic slips of the H.C.P grains decreased the fatigue strength with variation in mean stress.  相似文献   

17.
Fatigue tests were performed on welded joints made of high-strength, low-alloy steel (S690). Different welding processes were tested, resulting in welds with different defects essentially consisting in lack of penetration. Fatigue tests were run with both constant and variable amplitude loading. The experimental results were compared to predictions obtained by applying local approaches (local stress and local strain) and the concepts of fracture mechanics. The local stress approach allowed the fatigue strength of joints in constant amplitude loading (for fatigue above 2 × 106) to be predicted, but the assumption of a constant value of the slope k = 3 for all S–N curves led to non-conservative predictions of shorter lives. The local strain approach allowed the fatigue strength of the joints under constant amplitude to be predicted. Although, these predictions matched the experimental data well for both small and large defects in the entire cycle number range, they failed to predict the behaviour of joints under variable amplitude loading. Conversely, the fracture mechanics approach proved to be more efficient in predicting the fatigue behaviour of welded joint under variable amplitude loading.  相似文献   

18.
Due to the influence of gas pressure operational modes, surrounding rock of salt carven underground gas storage always suffers combined stress composed of cyclic pressure and intervals of no stress (or small stress). We conducted comparisons between conventional fatigue tests and (six groups of) interval fatigue tests, which combine spaced stress cycles and normal stress cycles. Experimental measurements demonstrate that the combined cyclic stress has a strong impact on the fatigue activity of rock salt. In interval fatigue tests, the residual strain of a spaced stress cycle is notably larger than that of a normal stress cycle. As the conventional tests can be actually considered as a kind of fatigue tests with transitory intervals, the accumulative rate of residual deformation increases with the duration of the interval in all test groups. The testing results show the fatigue lives of samples from interval fatigue tests dramatically reduce in a certain range; when intervals extend beyond the value 120 s, fatigue lives perform with a slight rise. Based on the S–N curve and the S–T curve, an experiential model fitting the relationship between fatigue life and interval was established.  相似文献   

19.
In the present paper, the heat treatment effect on A356.0, a cast aluminum alloy which has been widely used in diesel engine cylinder heads, is investigated under out-of-phase thermo-mechanical fatigue and low cycle fatigue (at different temperatures) loadings. A typical heat treatment is applied to the material including 8 h solution at 535 °C, water quench and 3 h ageing at 180 °C. The experimental fatigue results show that the heat treatment process has considerable influence on mechanical and low cycle fatigue behaviors, especially at room temperature, but its effect on thermo-mechanical fatigue lifetime is not significant. The improvement in the strength can be explained by the dislocation theory. Under thermo-mechanical fatigue loadings, the difference between the fatigue lifetime of A356.0 alloy and A356.0-T6 alloy decreases when the temperature range increases. In this condition, plastic strain increases severely during the fatigue cycles in A356.0-T6 alloy due to over-ageing phenomenon and therefore, the amount of cyclic softening in heat treated alloy is more.  相似文献   

20.
High temperature-resistant ductile cast irons behavior is highly interesting for the manufacture of components, such as exhaust manifolds for automotive applications. In the present paper the temperature-dependent static, high cycle and low cycle fatigue behavior of a heat-resistant Si–Mo–Cr ductile cast iron (Fe–2.4C–4.6Si–0.7Mo–1.2Cr) is investigated. Tensile and high cycle fatigue properties, in terms of elastic modulus, yield stress, elongation at break, fatigue limits, and the stress-life Basquin’s curve parameters have been determined at room temperature, 160 °C, 500 °C and 800 °C, thus covering the usual temperature range to which actual components, obtained with this kind of material, are subjected. The alloy showed good monotonic properties at low temperature, but showed to be fragile during fatigue tests, due to the high Silicon content in the alloy. At 500 °C mechanical properties are still good, with a 40% decrease with respect to 160 °C, and ductility is increased. The last temperature level of 800 °C has caused a noticeable drop of the cast iron strength, due to softening and oxidation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号