首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
传统三相有源功率因数变换器具有多种电路拓扑形式和控制方法,但整流部分常采用全桥结构,导致输入电流谐波含量较大,电路整体效率不高,而且控制方法相对复杂。基于单相模块构建了一种新型的单周期控制的三相无桥功率因数校正(PFC)电路,通过自耦变压器将三相电路解耦为两相无桥Boost PFC电路并联而成,为削弱2个并联电路之间的耦合干扰,加入分离元件实现了对2个并联电路的独立控制。仿真与实验结果验证了该单周期控制的三相无桥PFC电路的正确性,实现了高功率因数,采用无桥方案也有助于提高电路的整体效率,单周期控制策略控制简单,简化了电路结构。  相似文献   

2.
In this paper, linear proportional–integral (PI) and nonlinear flatness-based controllers for dc link stabilization for fuel cell/supercapacitor hybrid power plants are compared. For high power applications, 4-phase parallel boost converters are implemented with a switching interleaving technique for a fuel cell (FC) converter, and 4-phase parallel bidirectional converters are implemented with a switching interleaving technique for a supercapacitor converter in the laboratory. As controls, mathematical models (reduced-order models) of the FC converter and the supercapacitor converter are given. The prototype small-scale power plant studied is composed of a PEMFC system (the Nexa Ballard FC power generator: 1.2 kW, 46 A) and a supercapacitor module (100 F, 32 V, based on Maxwell Technologies Company). Simulation (by Matlab/Simulink) and experimental results demonstrate that the nonlinear differential flatness-based control provides improved dc bus stabilization relative to a classical linear PI control method.  相似文献   

3.
随着数据中心所需能量的日益增长,对于变换器高性能指标的追求十分迫切。文中设计了基于图腾柱结构实现高效高功率密度的软开关功率因数校正(PFC)电路,采用无桥PFC拓扑结合第三代宽禁带氮化镓器件,通过全数字控制方法实现电路在电流临界和准方波2种状态下切换工作,保证变换器在具备PFC功能的同时实现开关管零电压开关(ZVS)。首先介绍了图腾柱无桥PFC基本电路结构,通过分析电路暂态过程得出实现软开关特性的条件;然后根据全数字双闭环控制方法实现系统PFC功能,结合数学仿真模拟不同状态下图腾柱PFC输出特性;最终搭建了1台输入有效值220 V,输出48 V/400 W的AC/DC变换器。结果表明,系统在实现PFC功能的同时,可在全输入电压范围内保持ZVS特性,验证了电路设计及控制策略的可行性。  相似文献   

4.
This paper deals with experimental analysis of zero-voltage switching mode targeting high-frequency operation of chosen MOSFET type. After selection of specific type of transistor (IPW60R165CP) the experimental investigation has been made by changing parameters (e.g. dead-time, auxiliary capacitance of MOSFET, transistor current), that are influencing the ZVS commutation process. For these purposes we constructed the universal testing device, which is capable to secure realistic conditions of various types of commutation modes (hard switching, zero-voltage switching, zero-current switching). Afterwards the best settings of commutation mode have been utilized in proposed LLC converter suited for distributed power system application. Prototype is operating in ZVS region with optimized parameters. Switching frequency is from 130 kHz (input voltage 325 Vdc) to 210 kHz (input voltage 415 Vdc) with the output power of 1500 W. It is clear from the results that experimental analysis of the ZVS commutation mode brings expectation of transistor behavior which was totally confirmed also in the case of experimental analysis of LLC resonant converter.  相似文献   

5.
传统双Boost无桥PFC(power factor correction)变换器去除了整流桥结构,变换器效率得到了提高,但由于需要两个电感,整个系统功率密度小,体积大。分析了四种磁集成技术,并采用了一种中柱低磁阻磁路电感集成方式,将双Boost无桥PFC变换器的两个电感集成来缩减系统体积,通过分析和计算,该电路拓扑避免了环流问题。采用了改进无差拍控制算法来消除采样和计算延迟所带来的控制偏差,提升了输入电流的控制精度。最后搭建了一台750W的实验样机,验证了理论分析的正确性。  相似文献   

6.
In this study, a new bridgeless buck power factor correction (PFC) rectifier is presented. The proposed buck PFC rectifier is designed to operate in the discontinuous conduction mode (DCM). Because of the DCM operation, the control scheme of the proposed buck PFC rectifier is simple and easy, and the reverse recovery problem of the diodes can be alleviated. Because the input current follows the input voltage naturally, the current loop circuit is not required. Thus, only the traditional voltage‐mode control is employed to sense the output voltage, and a suitable control effort for the proposed buck PFC rectifier is generated to drive the power switches. Consequently, the output voltage of the proposed buck PFC rectifier can be kept at a desired value. Finally, the mathematical deductions and experimental results are provided to verify the effectiveness of the proposed bridgeless buck PFC rectifier. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an intelligent DC link control using a fuzzy logic controller based on the differential flatness control theory for hybrid vehicle applications supplied by a fuel cell (FC) (main source) and a supercapacitor (auxiliary source). The energy in the system is balanced by dc bus energy stabilization (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the dc bus energy. The FC, as a slow dynamic source in this system, supplies energy to the supercapacitor module to maintain its charge. The FC converter combines four-phase parallel boost converters with interleaving, and the supercapacitor converter employs four-phase parallel bidirectional converters with interleaving. These two converters are called a multi-segment converter for high power applications. Because the model of the power switching converters is nonlinear, it is preferable to apply model-based nonlinear control strategies that directly compensate for the nonlinearity of the system without requiring a linear approximation. Using the intelligent fuzzy control law based on the flatness property, we propose straightforward solutions to hybrid energy management and to the dynamic and regulation problems. To validate the proposed method, a hardware system is developed with analogue circuits, and a numerical calculation is generated with a dSPACE controller DS1104. Experimental results for a small-scale power plant (a polymer electrolyte membrane FC (PEMFC) of 1200 W and 46 A with a supercapacitor module of 100 F, 500 A, and 32 V) in the laboratory corroborate the excellent performance of this control scheme during vehicle motor drive cycles.  相似文献   

8.
This paper presents a multi-objective optimal operation of meshed AC/DC power grids including multi-terminal voltage-source-converter-based high-voltage direct current (VSC-MTDC) systems. The proposed approach is modeled as a corrective security-constrained optimal power flow (CSC-OPF) problem, with the minimization of both the operation cost and power loss as the objectives. Moreover, it provides a cost-effective solution to assist in decision-making, and improves the system security during operation. The N  1 contingency security criterion is enforced for both AC and DC transmission networks, and corrective control is used to eliminate or alleviate post-contingency security violations. The corrective control actions used in this paper include not only secure operation control actions, but also economical post-contingency corrective control of the multi-terminal VSC-HVDC. To increase the computation speed, a contingency screening technique is applied to CSC-OPF by efficiently selecting the most severe case of the N  1 contingency, as obtained using a voltage security index (VSI). The proposed approach uses the non-dominated sorting genetic algorithm (NSGA-II) to find multi-objective OPF solutions by checking the post-contingency state feasibility while taking into account post-contingency corrective actions. Simulation results confirm the validity and effectiveness of this approach.  相似文献   

9.
This paper presents an average sliding control (ASC) method to be used in power factor correction (PFC) converters to decrease the total harmonic distortion (THD) of the input current by eliminating the input current harmonics. The ASC algorithm is adapted to digital signal processor due to its well-known properties such as robustness, stability and good regulation in a wide range of operating conditions. The control approach is operated in continuous conduction mode. In this approach, all the duty cycles required to achieve unity power factor in a half line period are calculated in advance using ASC method. The feed forward is also used in the control algorithm using rms value of the input voltage. The implementation of feed forward improves the converter performance to obtain a near unity power factor correction with a lower input current THD. The converter used in simulation and experimental studies is a Sheppard–Taylor PFC converter. The stability analysis of proposed control method is performed with the effect of changes in input voltage and load. In addition, the performance of ASC method is compared with UC3854AN traditional analog PFC control method. The experiments performed in the laboratory for different cases of operation verify the theoretical and simulation studies performed in MATLAB/Simulink. The experimental results are satisfied by IEC 61000-3-2 Current Harmonic Standard.  相似文献   

10.
This paper presents a decoupled control of grid connected inverter using dynamic online grid impedance measurements for a micro grid application. The proposed controller is implemented in synchronous reference frame (SRF) and controlled using linear PI controllers. The mutual coupling introduced between the d and q control loops due to the transformation into SRF is accurately decoupled using the dynamically measured grid impedance using a feed-forward control. The decoupling allows independent control of active and reactive powers against step changes in the active/reactive power references. The online measurement of the actual impedance and its use further for decoupling is proposed in this paper for making the decoupling accurate inspite of the network configuration being altered like in micro grids. Here the grid resistance and inductance are measured during the operation using a non-characteristic frequency current continuously injected into the grid, and subsequently calculating the impedance using discrete Fourier transforms. The continuous injection of non-characteristic current at 75 Hz avoids the injection of sub-harmonics into the grid during measurements. The control loop is updated periodically with the estimated grid impedance, thus enabling the independent control of active and reactive powers delivered by the inverter. The proposed decoupled controller with grid impedance measurement is tested through simulation studies and hardware experiments. The experiments are conducted with the proposed controller on a scaled down laboratory model of micro-grid with a 1 kVA solar inverter, and the performances are presented for step changes in the power references and the results are presented.  相似文献   

11.
黄超  林维明 《电源学报》2011,9(1):61-65
传统的升压型有源功率因数校正(APFC)电路的导通器件多,通态损耗较大,在功率较大和低压输入时的应用场合,其通态损耗影响整机效率的提升.无整流桥的PFC电路成为当今研究热点.文章分析比较了现有无桥PFC电路,并采用一种新型的无桥升压型APFC电路,其导通器件少,电压应力低,开关损耗小,在中大功率场合可得更高效率.文中介...  相似文献   

12.
与传统电流断续模式(DCM)Boost功率因数校正(PFC)变换器相比,定占空比控制二次型DCM-DCM Boost PFC变换器的输出电压纹波明显减小,然而,其功率因数(PF)低于传统DCM Boost PFC变换器,并随输入电压的增大而下降。针对此问题,提出了变占空比控制二次型DCM-DCM Boost PFC变换器,研究了其PF和输出电压纹波的表达式,通过占空比的拟合,给出了相应的控制电路。在90~220V输入电压范围内,变占空比控制二次型DCM-DCM Boost PFC变换器的PF均接近于1,且具有较小的输入电感电流纹波和较低的输出电压纹波,实现了高功率因数与低输出电压纹波特性。实验结果验证了理论分析的正确性。  相似文献   

13.
针对电力系统传统通信电源设备功率因数低,电源谐波高的不足,提出一种新型的无桥Boost PFC电路结构。通过对电路拓扑结构的工作原理分析,应用平均电流控制策略,建立了相应的仿真模型。仿真结果表明,与传统的Boost PFC相比,无桥Boost PFC电路能够很好地提高功率因数,抑制电流谐波,且输入电流能很好地跟踪输入电压。最后设计了一台500 W的实验样机,实验结果验证了所提出电路的正确性和可行性。  相似文献   

14.
为了提高电力电子装置的功率因数,选用一种功率因数校正方案,在电路拓扑方面采用无桥双Boost功率因数校正(2nd DBPFC)电路,降低电路损耗,可提高装置的效率;在控制策略方面采用单周期控制技术,不需要乘法器及输入线电压采样和电压前馈,只需开关管电流峰值信号就能完成对输入电流的控制,控制电路的设计简单.对单周期控制无...  相似文献   

15.
An uninterruptible power supply (UPS) system with different input current ripple reduction methods is proposed, and a comparison research has been conducted about these methods. The proposed UPS system consists of a 63-cell 300 W proton exchange membrane (PEM) fuel cell stack, two 16-cell supercapacitors (SCs) in series, a high-efficiency push–pull DC/DC converter and a half-bridge DC/AC inverter. Besides that the traditional push–pull DC/DC converter has inherent advantages of low input-current stress and high voltage conversion ratio, the SCs, LC filter, and an active clamp circuit are employed to reduce the input current ripples in the UPS system. First, the input current ripple generation and performance without an external component are analyzed and modeled in the PEM fuel cell. Then the input current ripple reduction methods mentioned above are proposed and operated in the designed UPS system. Finally, the experimental results show that the input current ripple can be further reduced by using different current ripple reduction approaches, and the active compensation method has better performance than the passive compensation method. The input current ripple is less than 5% of the rated input current.  相似文献   

16.
In this paper three new control modules are introduced for offshore wind power plants with VSC-HVDC transmission. The goal is to enhance the Fault Ride Thought (FRT) capability of the HVDC system and the connected offshore wind power plant during balanced and unbalanced AC faults. Firstly, a positive-sequence-voltage-dependent (PSVD) active current reduction control loop is introduced to the offshore wind turbines. The method enhances the performance of the offshore AC voltage drop FRT compliance strategy. Secondly, an adaptive current limiting control strategy which operates simultaneously on the positive and the negative sequence current is discussed. It enables negative sequence current injection, while at the same time respecting the maximum fault current capacity of the HVDC converter station. Finally, a state machine is proposed for the VSC-HVDC system and for the offshore wind turbines respectively. It coordinates the fault and the post-fault response during balanced as well as unbalanced faults, ensuring a smooth shift from the normal operating point towards the fault and the post-fault period. The test system consists of a two level VSC-HVDC link, rated at ±250 kV, connecting an offshore wind power plant with 700 MW generation capacity. Simulation results with a detailed EMT type model in PSCAD/EMTDC environment are presented.  相似文献   

17.
在无桥Flyback功率因数校正(PFC)变换器中引入二次侧谐振电路,提出一种无桥双谐振PFC变换器。该变换器利用变压器二次侧漏感与谐振电容的谐振,减小了开关管关断电流,从而降低了开关管的关断损耗。同时,二次侧二极管实现零电流关断,有效抑制二极管的电压尖峰和振荡。接着分析变换器工作于临界连续模式(CRM)的工作原理和工作特性,给出变换器关键参数的设计原则。最后通过实验验证了理论分析的正确性。  相似文献   

18.
张厚升 《电气传动》2007,37(9):32-35
传统有源功率因数校正电路中导通器件多,通态损耗大,不适于中大功率场合.基于单周期控制技术的IR1150是一种新型的功率因数校正芯片,无需传统PFC电路所需的乘法器,不需要检测输入电压.以IR1150为控制芯片,提出了一种无桥路高功率因数整流器,分析了其工作原理,对电磁干扰(EMI)和电流检测方案进行了分析与设计.500 W的试验样机表明,该整流器电路结构简单、可靠,而且成本低,功率因数可达0.99.  相似文献   

19.
This paper investigates the Sustainable Saturation Operation (SSO) of Ferrite Core Power Inductors (FCPIs) in Switch Mode Power Supplies (SMPSs). A ferrite inductor is considered in SSO if its current ripple, power losses and temperature rise are acceptable and reliable for both the device and the SMPS, despite the inductance drop determined by the core saturation. An algorithm is discussed, which identifies SSO-compliant FCPIs with minimum size and volume, given the SMPS specifications about the allowed power losses, temperature rise and peak-to-peak current ripple of the inductor. The experimental results relevant to a 465 kHz/3.3 V/1.5 A buck converter show that SSO-compliant inductors allow to increase the SMPS power density, while preserving the overall converter efficiency. Despite the proposed low power application, the findings relevant to the utilization of power inductors in partial saturation have general conceptual valence and similar investigations can be prospectively re-assessed for few kW output power DC/DC converters.  相似文献   

20.
无桥电路由于电流流经功率回路中半导体器件的减少,相对传统整流桥的电路拓扑效率得到提升,在低压输入和中大功率应用场合意义显著。现有的无桥电路存在EMI问题突出等不足,为此对现有无桥Boost型电路进行改进,提出了具有高效率、高功率因数和低EMI噪声的新型无桥Boost功率因数校正(PFC)拓扑,在理论分析的基础上使用Pspice 9.2进行仿真验证。设计了一台85~265 V交流输入,400 V/300 W输出的实验样机,进一步验证了该无桥变换器的良好电气特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号