首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

2.
Investigations are presented in this paper on quenched and tempered steel 42CrMoS4 from two batches, with two different tensile strengths (Rm = 1100 MPa, 1350 MPa) but with similar microstructure, and a nodular cast iron EN-GJS-900-2 (Rm = 930 MPa). Fatigue tests with smooth (Kt = 1) and notched (Kt = 1.75) specimens were performed at R = −1 and R = 0 up to the number of cycles N = 2·109 in order to determine the fatigue strength behaviour and failure mechanisms, especially in the VHCF-region. Failure in smooth specimens often initiated at material defects such as oxides in the quenched and tempered steel and shrinkage holes in the nodular cast iron. Firstly, a fatigue strength analysis was performed that did not consider these defects. A possibility of analysis of experimental data including VHCF-results has been discussed. Next, a linear elastic fracture mechanics analysis was performed in order to describe the defect behaviour, assuming that the defects act like cracks. The results showed that there are lower limit or threshold values of the stress intensity factor range ΔK for crack propagation in both materials. Analysis of defects and defect distribution in run-out specimens confirmed this conclusion. From the comparison of the results with an SN curve from the design code FKM-Guideline Analytical strength assessment of components, recommendations for design and assessment of components have been derived.  相似文献   

3.
Thin sheets of nitrided 18Ni maraging steel are tested under cyclic tension (load ratio R = 0.1) in the very high cycle fatigue (VHCF) regime. The ultrasonic fatigue testing method with a cycling frequency of about 20 kHz has been further developed for these experiments. Sheet specimens with 0.35 mm thickness are mounted on a carrier specimen, they are pre-stressed and are forced to vibrate jointly. Between 107 and 109 cycles, fatigue cracks are initiated exclusively at internal TiN inclusions. The areas of the crack initiating inclusions projected perpendicular to the applied tensile stress are evaluated. The square root of inclusion areas, (areaINC)1/2 lies between 2.5 μm and 5.3 μm. Considering inclusions as cracks, their stress intensity range is between ΔKINC = 1.3 MPa m1/2 and 2.4 MPa m1/2. The sizes of crack initiating inclusions influence fatigue lifetimes. This is considered in a crack propagation model and by presenting lifetimes versus the stress amplitudes multiplied by (areaINC)1/12. A mean lifetime of 109 cycles is found at a stress amplitude of 22% of the tensile strength, which is comparable to other high strength steels tested under cyclic tension.  相似文献   

4.
The fatigue crack growth behaviour of short corner cracks in the Aluminium alloy Al 6013-T6 was investigated. The aim was to determine the crack growth rates of small corner cracks at a stress ratio of R = 0.1, R = 0.7 and R = 0.8 and to find a possible way to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T) – specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The precracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a focussed ion beam. The results of the fatigue crack growth tests with short corner cracks were compared with the long fatigue crack growth test data. The short cracks grew at ΔK-values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK-values and the same stress ratios. A model was created on the basis of constant Kmax-tests with long cracks that gives a good and conservative estimation of the short crack growth rates.  相似文献   

5.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

6.
Fatigue properties of bainitic 100Cr6 (SAE 52100, JIS SUJ2) steel are investigated in the high cycle and very high cycle fatigue (VHCF) regime. Fully reversed tension–compression fatigue tests are performed with ultrasonic fatigue testing equipment. Specimens are grinded which leads to surface compression stresses and increased surface roughness. About 1/3 of the specimens failed after crack initiation at interior Al2O3? or TiN-inclusions and 2/3 failed after surface crack initiation at scratches or cavities. When inclusions are considered as cracks, failures can occur at minimum stress intensity range of 2.8 MPa m1/2, and maximum stress intensity range without failure is 3.3 MPa m1/2. Facets are visible close to the inclusion in some specimens, and the stress intensity range at the border of the facet is approximately 4.5 MPa m1/2. Murakami’s model can well predict the endurance limit at 109 cycles for internal failures considering the area of the inclusion in the evaluation. Surface fatigue crack initiation can lead to failure above 108 cycles. When scratches are considered as cracks, minimum stress intensity range of 2.5 MPa m1/2 can propagate surface cracks to failure. Fracture mechanics approach showed several similarities to literature results of the same material tested in tempered martensite condition.  相似文献   

7.
《Composite Structures》2012,94(1):290-298
Compression–compression fatigue test study of a fire resistant Eco-Core was conducted at two values of stress ratios (R = 10 and 5). Tests were conducted at Smin/So values of 0.9–0.6 for R = 10 and 0.95–0.8 for R = 5. Here Smin is the maximum compression stress and So is the compression strength. The study showed that Eco-Core has well defined failure modes and associated fatigue lives. The failure modes are: damage on-set; damage progression, and final failure. The damage on-set, propagation and final failure were characterized by 2%, 5% and 7% changes in compliance. The three failure modes were found to be same for both static and fatigue loadings. The endurance limit was found to be 0.72So, 0.75So and 0.76So, respectively for three failure modes for R = 10 and 0.81So, 0.82So and 0.82So, respectively for R = 5. The fatigue life is defined by a power law equation, Smin/So = AoNα. Constants of the equation were established for all three modes of failures and the two stress ratios. Finally, fatigue life was found to be less sensitive to R ratio when expressed in terms of stress range versus number of load cycles, which is similar to that of metallic materials.  相似文献   

8.
The present paper is aimed at investigating the effect of shot peening on the high and very-high cycle plain fatigue resistance of the Al-7075-T651 alloy. Pulsating bending fatigue tests (R = 0.05) were carried out on smooth samples exploring fatigue lives comprised between 105 and 108 cycles. Three peening treatments were considered to explore different initial residual stress profiles and surface microstructural conditions. An extensive analysis of the residual stress field was carried out by measuring with the X-ray diffraction (XRD) technique the residual stress profile before and at the end of the fatigue tests. Fatigue crack initiation sites were investigated through scanning electron microscopy (SEM) fractography. The surface morphology modifications induced by shot peening were evaluated using an optical profilometer. The influence of surface finishing on the fatigue resistance was quantified by eliminating the surface roughness in some peened specimens through a tribofinishing treatment. The capability of shot peening to hinder the initiation and to retard the subsequent propagation of surface cracks is discussed on the basis of a model combining a multiaxial fatigue criterion and a fracture mechanics approach.  相似文献   

9.
Effects of anisotropy and temperature on cyclic deformation and fatigue behavior of two short glass fiber reinforced polymer composites were investigated. Fatigue tests were conducted under fully-reversed (R = −1) and positive stress ratios (R = 0.1 and 0.3) with specimens of different thicknesses, different fiber orientations, and at temperatures of −40 °C, 23 °C, and 125 °C. In samples with 90° fiber orientation angle, considerable effect of thickness on fatigue strength was observed. Effect of mold flow direction was significant at all temperatures and stress ratios and the Tsai–Hill criterion was used to predict off-axis fatigue strengths. Temperature also greatly influenced fatigue strength and a shift factor of Arrhenius type was developed to correlate fatigue data at various temperatures, independent of the mold flow direction and stress ratio. Micromechanisms of fatigue failure at different temperatures were also investigated. Good correlations between fatigue strength and tensile strength were obtained and a method for obtaining strain–life curves from load-controlled fatigue test data is presented. A fatigue life estimation model is also presented which correlates data for different temperatures, fiber orientations, and stress ratios.  相似文献   

10.
The HASTELLOY® C-22HSTM alloy is a face-centered cubic (fcc), nickel-based, corrosion-resistant superalloy. In the present study, the low-cycle-fatigue behaviors of the alloy were examined by in situ neutron diffraction at room temperature. The fatigue parameters included a total strain range of Δε = 2% and a strain ratio of R = −1 (R = εmin/εmax, where εmin and εmax are the applied minimum and maximum strains, respectively). The effect of cyclic deformation on the lattice strains was studied as a function of cyclic straining. The cyclic hardening and softening behaviors during fatigue is discussed in light of the relationship between the peak widths and lattice strains.  相似文献   

11.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

12.
This paper presents experimental results on the fatigue properties of Al-matrix nanocomposites prepared by the friction stir processing (FSP) technique. An Al–Mg alloy (AA5052) with different amounts (∼2 and 3.5 vol%) of pre-placed TiO2 nanoparticles were FSPed up to 6 passes to attain homogenous dispersion of nano-metric inclusions. Microstructural studies by electron microscopic and electron back scattering diffraction (EBSD) techniques showed that nano-metric Al3Ti (50 nm), TiO2 (30 nm), and MgO (50 nm) particles were distributed throughout a fine-grained Al matrix (<2 μm). Consequently, a significant improvement in the tensile strength and hardness was attained. Uniaxial stress-controlled tension–tension fatigue testing (R = 0.1) were utilized to evaluate the fatigue behavior of the prepared nanocomposites. The results were compared with the un-processed (annealed) and FSPed alloy without pre-placing TiO2 particles. It was found that FSP of the aluminum alloy increased the fatigue strength (at 107 cycles) for about 28% and 32% compared with the annealed specimen when the concentration of the reinforcing particles was 2 and 3.5 vol%, respectively. Fractographic analysis determined a ductile fracture behavior with deep-equiaxed dimples for the annealed and FSPed alloy. The facture surface of the nanocomposites revealed a combined ductile–brittle fracture mode with finer dimples. The mechanism of the fatigue fracture and the role of nano-metric inclusions were elaborated.  相似文献   

13.
Effect of stress ratio on fatigue properties of a titanium alloy (TC-17) in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) were investigated by electromagnetic and ultrasonic fatigue testing. The SN curves at R = −1, 0.1, 0.5 and 0.7 at 110 Hz and 20 kHz were obtained and discussed. The effects of frequency on fatigue strength was also investigated. It was concluded that the fatigue strength with 50% fatigue failure probability at R = 0.1, 0.5 and 0.7 is lower to the Goodman line and shows a bilinear decreasing trend. Cleavage fracture of primary grains in the surface and interior initiation zone were observed. The formation of the facets induced by the basal or prismatic slips of the H.C.P grains decreased the fatigue strength with variation in mean stress.  相似文献   

14.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

15.
In order to observe the influence of strontium (Sr) modification and hot isostatic pressing (HIP) on an aluminum–silicon cast alloy A357 (AlSi7Mg0.6), the microstructure and the high cycle fatigue behavior of three batches of materials produced by investment casting (IC) were studied. The parts were produced by an advanced IC proprietary process. The main process innovation is to increase the solidification and cooling rate by immersing the mold in cool liquid. Its advantage is to produce finer microstructures. Microstructural characterization showed a dendrite arm spacing (DAS) refinement of 40% when compared with the same part produced by conventional investment casting. Fatigue tests were conducted on hourglass specimens heat treated to T6, under a stress ratio of R = 0.1 and a frequency of 25 Hz. One batch of material was unmodified but two batches were modified with 0.007% and 0.013% Sr addition, from which one batch was submitted to HIP after casting. Results reported in SN diagrams show that the addition of Sr and the HIP process improve the 106 cycles fatigue strength by 9% and 34% respectively. Scanning electron microscopy (SEM) observation of the fracture surfaces showed a variety of crack initiation mechanisms. In the unmodified alloy, decohesion between the coarse Si particles and the aluminum matrix was mostly observed. On the other hand, in the modified but non HIP-ed alloy, cracks initiated from pores. When the same alloy was subjected to HIP, a competition between crystallographic crack initiations (at persistent slip bands) and decohesion/failure of intermetallic phases was observed. When compared to fatigue strength reported for components produced by permanent mold casting, the studied material are more resistant to fatigue even in the unmodified and non HIP-ed states.  相似文献   

16.
The fatigue properties of FV520B-I up to 109 cycles when the surface roughness Ra  0.6 were tested and compared with two groups of previously obtained test results. The test results showed that the S-N curve continuously moved downward and the transition stress at which the crack origin changed from the surface to the subsurface decreased with an increase of surface roughness, and the conventional fatigue limit finally appeared. The initiation mechanism of subsurface cracks in a very high cycle fatigue regime was independent of surface roughness. The surface fatigue limit and the high cycle fatigue life were predicted by relevant models. The competition mechanism between surface cracking and subsurface cracking was further discussed.  相似文献   

17.
The low-cycle fatigue (LCF) properties and post-fatigue microstructure of a Fe–15Mn–10Cr–8Ni–4Si austenitic alloy were investigated under an axial strain control mode with total strain amplitudes, Δεt/2, ranging from 2.5 × 10−3 to 2 × 10−2. The fatigue resistance of the alloy was described by Coffin–Manson’s and Basquin’s relationships, and the corresponding fatigue parameters were evaluated. In addition, the Masing behavior, which is associated with a constant deformation mode during fatigue, was revealed at the examined strain amplitudes. Microstructural observations of the fatigue fractured samples showed that the strain induced ε-martensitic transformation accompanied by a planar slip of the Shockley partial dislocations in the austenite is the main deformation mode controlling the fatigue behavior of the studied alloy at Δεt/2 < 2 × 10−2. However, at Δεt/2 = 2 × 10−2, the formation of a cell structure was found in the austenite in addition to ε-martensitic transformation. The LCF resistance of the alloy was compared with conventional Cr–Ni austenitic stainless steels, ferrous base TRIP and TWIP steels and low yield point damping steels. It was found that at the studied strain amplitudes the alloy possessed a higher LCF resistance compared to conventional Fe-base alloys and steels. Remarkably, the fatigue ductility coefficient, εf′, of the studied alloy is 1.3–6 times higher than that of the stainless steels because of a cyclic deformation-induced ε-martensitic transformation. The results showed that the ε-martensitic transformation that occurred in the studied alloy during LCF is the main reason for the improved LCF resistance.  相似文献   

18.
Fatigue behavior of double spot friction welded joints in aluminum alloy 7075-T6 plates is investigated by conducting monotonic tensile and fatigue tests. The spot friction welding procedures are carried out by a milling machine with a designed fixture at the best preliminary welding parameter set. The fatigue tests are performed in a constant amplitude load control servo-hydraulic fatigue testing machine with a load ratio of (R = Pmin/Pmax) 0.1 at room temperature. It is observed that the failure mode in cyclic loading (low-cycle and high-cycle) resembles that of the quasi-static loading conditions i.e. pure shearing. Primary fatigue crack is initiated in the vicinity of the original notch tip and then propagated along the circumference of the weld’s nugget.  相似文献   

19.
Three types of welded joints have been assessed with regard to their fatigue strength based on the mean-stress damage parameter model according to Smith, Watson, and Topper (PSWT) and on the reference notch radius concept. These analyses were performed with three different stress ratios, R = −1, R = 0 and R = 0.5, under axial loading. For each stress level, the corresponding Neuber-Hyperbolas, Masing-loops and their maximum stress and maximum strain values were determined in order to calculate damage parameter (PSWT) values. For a given weld geometry, this damage parameter is able to unify the fatigue results for different R-values within at a tight scatter band and therefore to consider the mean-stress effect. The unification of the results for different weld geometries is performed by applying the reference radii rref = 0.05 and rref = 1.00 mm as suggested by the IIW-Recommendations.  相似文献   

20.
In fatigue critical applications, Ti-10 V-2 Fe-3 Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10 V-2 Fe-3 Al alloy in very high cycle fatigue(VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initiation mechanism, from internal crack initiation to surface crack initiation and from α_p cleavage to α_s/βdecohesion, occur when the stress ratio(R) and stress level are reduced. Fatigue limits exist at N_f = 6 × 10~7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of α_p facets and α_s/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from-0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号