首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method which can nondestructively measure the surface-state density (SSD) Ds and estimate the capture cross-sections (CCS) of surface state σ0n and σp on surface of p-type semiconductor crystals is proposed. This method is based on the photovoltage measurements at various temperatures. The photovoltage experiment was carried out with a (1 1 1) p-type Si single crystal (NA=4.8×1014 cm −3). Owing to that the surface barrier height φBP=0.6421 V and the surface-recombination velocity sn=9.6×103 cm s−1 of this sample can be determined, the SSD Ds=1.2×1011 cm−2 eV−1 can therefore be obtained, furthermore CCS σ0n≈5×10−14 cm2 and σp≈2×10−10 cm2 can also be estimated. These results are consistent with that of related reports obtained by other methods.  相似文献   

2.
Electrical, structural, and optical properties of a free-standing 200 μm thick n-type GaN template grown by hydride vapor phase epitaxy have been investigated. Hall mobilities of 1100 and 6800 cm2/V s have been obtained at room temperature and 50 K, respectively. Quantitative analysis of acceptor concentration, donor concentration and donor activation energy has been conducted through simultaneous fitting of the temperature dependent Hall mobility and carrier concentration data which led to a donor concentration of 2.10×1016 cm−3 and an acceptor concentration of 4.9×1015 cm−3. The resultant donor activation energy is 18 meV. The analysis indicates that the dominant scattering mechanism at low temperatures is by ionized impurities. The extended defect concentrations on Ga- and N-faces were about 5×105 cm−2 for the former and about 1×107 cm−2 for the latter, as revealed by a chemical etch. The full width at half maximum of the symmetric (0 0 0 2) X-ray diffraction peak was 69″ and 160″ for the Ga- and N-faces, respectively. That for the asymmetric (10–14) peak was 103″ and 140″ for Ga- and N-faces, respectively. The donor bound exciton linewidth as measured on the Ga- and N-face (after a chemical etch to remove the damage) is about 1 meV each at 10 K. Instead of the commonly observed yellow band, this sample displayed a green band, which is centered at about 2.45 eV.  相似文献   

3.
We present a new ohmic contact material NiSi2 to n-type 6H-SiC with a low specific contact resistance. NiSi2 films are prepared by annealing the Ni and Si films separately deposited on (0 0 0 1)-oriented 6H-SiC substrates with carrier concentrations (n) ranging from 5.8×1016 to 2.5×1019 cm−3. The deposited films are annealed at 900 °C for 10 min in a flow of Ar gas containing 5 vol.% H2 gas. The specific contact resistance of NiSi2 contact exponentially decreases with increasing carrier concentrations of substrates. NiSi2 contacts formed on the substrates with n=2.5×1019 cm−3 show a relatively low specific contact resistance with 3.6×10−6 Ω cm2. Schottky barrier height of NiSi2 to n-type 6H-SiC is estimated to be 0.40±0.02 eV using a theoretical relationship for the carrier concentration dependence of the specific contact resistance.  相似文献   

4.
Mo, Pt, Pt/Mo and Pt/Ti thin films have been deposited onto Si and SiO2 substrates by RF sputtering and annealed in the YBa2Cu3O7−δ (YBCO) growth conditions. The effect of annealing on the sheet resistance of unpatterned layers was measured. A Pt-based multilayered metallization for the PMOS devices was proposed and tested for a compatible monolithic integration of semiconducting devices and YBCO sensors on the same silicon substrate. The best results were obtained with a Pt/Ti/Mo-silicide structure showing 0.472 Ω interconnect sheet resistivity and 2×10−4 Ω cm2 specific contact resistivity after annealing for 60 min at 700 °C in 0.5 mbar O2 pressure.  相似文献   

5.
Micropillars were fabricated on multiple quantum-well structure of PbSe/PbSrSe grown on top of BaF2 substrate in molecular beam epitaxy (MBE). The photoluminescence spectra from the pillar structure, having a diameter of 5 μm and inter-pillar distance of 8 μm, was studied at various temperature starting from 77 to 300 K. There had been an approximately consistent red-shift of photoluminescence peak of 3.62 cm−1 for unit K change in ambient temperature. The prominent and repeatable emission from the micropillars at various temperatures signified high crystalline nature of the fabricated micro-objects. This type of micropillar structure is one of the magnificent contenders of future opto-electronic micro-features.  相似文献   

6.
28Si+ implantation into Mg-doped GaN, followed by thermal annealing in N2 was performed to achieve n+-GaN layers. The carrier concentrations of the films changed from 3×1017 (p-type) to 5×1019 cm−3 (n-type) when the Si-implanted p-type GaN was properly annealed. Specific contact resistance (ρc) of Ti/Al/Pt/Au Ohmic contact to n-GaN, formed by 28Si+ implantation into p-type GaN, was also evaluated by transmission line model. It was found that we could achieve a ρc value as low as 1.5×10−6 Ω cm2 when the metal contact was alloyed in N2 ambience at 600 °C. Si-implanted GaN p–n junction light-emitting diodes were also fabricated. Electroluminescence measurements showed that two emission peaks at around 385 and 420 nm were observed, which could be attributed to the near band-edge transition and donor-to-acceptor transition, respectively.  相似文献   

7.
Passivation of GaAs surfaces was achieved by the deposition of Ge3N4 dielectric films at low temperatures. Electrical characteristics of MIS devices were measured to determine the interface parameters. From C-V-f and G-V-f measurements, density of interface states has been obtained as (4–6)×1011 cm−2 eV−1 at the semiconductor mid-gap. Some inversion charge buildup was seen in the C-V plot although the strong inversion regime is absent. Thermally stimulated current measurements indicate a trap density of 5×1018−1019 cm−3 in the dielectric film, with their energy level at 0.59 eV.  相似文献   

8.
In the present work we report the first measurement of intersubband lifetimes in Si/Si1−xGex quantum well samples. We have determined T1 by a time resolved pump and probe experiment using the far infrared picosecond free electron laser source FELIX at Rijnhuizen, the Netherlands. In a sample with a well width of 50 Å and a sheet density of 2.1 × 1012 cm−2 we find a lifetime of 30 ps while 20 ps is observed for a density of 1.1 × 1012 cm−2 and a well width of 75 Å. We discuss acoustic phonon, as well as optical phonon intersubband scattering as possible limiting processes for the observed lifetimes in Si/SiGe and GaAs/AlGaAs quantum wells.  相似文献   

9.
Transport properties of the photoexcited electron-hole plasma in n-type InP have been studied by the spatial-imaged, time-resolved Raman scattering technique with 30μm and 0.1μm spatial resolution for lateral and perpendicular transport, respectively, and on a picosecond time scale. The plasma density ranging from 1 × 1016 to 2 × 1017 cm−3 was deduced from fitting of the Raman spectra with the plasmon-LO phonon scattering theory which took into account the contributions from free holes. In contrast to the experimental results of Young and Wan who found that ordinary diffusion equation was sufficient to fit their transient plasma density-time profiles in semi-insulating InP, our experimental measurements have shown that perpendicular transport (i.e., expansion into the bulk crystal) of the plasma in n-type InP can be very well described by a modified diffusion equation including the effect of drifting away from the surface based on a hydrodynamic model. The transient plasma density-time profiles were studied at T = 300K and for an initial injected plasma density n 2 × 1017 cm−3. The plasma has been found to expand laterally at a velocity V 5 × 104 cm/sec and perpendicularly into the crystal at a velocity Vp 1.5 × 105 cm/sec.  相似文献   

10.
Zn0.52Se0.48/Si Schottky diodes are fabricated by depositing zinc selenide (Zn0.52Se0.48) thin films onto Si(1 0 0) substrates by vacuum evaporation technique. Rutherford backscattering spectrometry (RBS) analysis shows that the deposited films are nearly stoichiometric in nature. X-ray diffractogram of the films reveals the preferential orientation of the films along (1 1 1) direction. Structural parameters such as crystallite size (D), dislocation density (δ), strain (ε), and the lattice parameter are calculated as 29.13 nm, 1.187 × 10−15 lin/m2, 1.354 × 10−3 lin−2 m−4 and 5.676 × 10−10 m respectively. From the IV measurements on the Zn0.52Se0.48/p-Si Schottky diodes, ideality and diode rectification factors are evaluated, as 1.749 (305 K) and 1.04 × 104 (305 K) respectively. The built-in potential, effective carrier concentration (NA) and barrier height were also evaluated from CV measurement, which are found to be 1.02 V, 5.907 × 1015 cm−3 and 1.359 eV respectively.  相似文献   

11.
Early predictions that diamond would be a suitable material for high performance, high power devices were not supported by the characteristics of diodes and field effect transistors (FETs) fabricated on boron doped (p-type) thin film material. In this paper commercially accessible polycrystalline thin film diamond has been turned p-type by the incorporation of near surface hydrogen; mobility values as high as 70 cm2 V−1 s−1 have been measured for films with a carrier concentration of 5×1017 cm−3. Schottky diodes and metal–semiconductor FETs (MESFETs) have been fabricated using this approach which display unprecedented performance levels; diodes with a rectification ratio >106, leakage currents <1 nA, no indication of reverse bias breakdown at 100 V and an ideality factor of 1.1 have been made. Simple MESFET structures that are capable of switching VDS values of 100 V with low leakage and current saturation (pinch-off) characteristics have also been fabricated. Predictions based upon experiments performed on these devices suggest that optimised device structures will be capable of operation at power levels up to 20 W mm−1, implying that thin film diamond may after all be an interesting material for power applications.  相似文献   

12.
In situ boron-doped polycrystalline Si1−xGex (poly-Si1−xGex) films deposited by ultrahigh vacuum chemical vapor deposition (UHV/CVD) system were characterized. Optimum fitted values of grain boundary trap state densities, 4.0 × 1012 cm−2 and 4.9 × 1012 cm−2 were obtained for poly-Si and poly-Si0.79Ge0.21, respectively. The extracted average carrier concentration in the grain agrees with secondary ion mass spectroscopy (SIMS) analysis. In turn, we found that these films are suitable Hall elements to sense magnetic field. Experimental results show that the sensitivity decreased with the increasing input current, which can be well explained using the thermionic emission theory. Finally, we use these films to fabricate thin film transistors.  相似文献   

13.
This paper reports the fabrication of an in situ back-gated hole gas on the (311)A surface of GaAs. The hole density can be varied from fully depleted to ps = 2.1 × 1011 cm−2 with mobilities of up to μ = 1.1 × 106 cm2V−1 s−1. It is seen that for carrier densities down to ps = 4 × 1010 cm−2 the mobility in the [ ] direction is greater than that in the [ ] direction. Using a combination of front- and back-gates we are able to keep the carrier density constant and deform the hole gas wavefunction such that the holes are pushed up against or moved further away from the heterointerface. Thus we are able to separately investigate the various scattering mechanisms that determine the mobility, and compare the experimental data with theoretical calculations based on the shape of the wavefunction.  相似文献   

14.
GaAs P-i-N layers with an i-region net doping of less than 1012 cm−3 were grown on P+ and N+ substrates by a modified liquid phase epitaxy (LPE) method. Doping profiles and structural data obtained by varius characterization techniques are presented and discussed. A P+-P-i-N-N+ diode with a 25 μm-wide i-region exhibits a breakdown voltage of 1000 V, a trr of 50 ns, and reverse current densities (at VR = 800 V) of − 3 × 10−6 A/cm2 at 25°C and 10−2 A/cm2 at 260° C.  相似文献   

15.
X-band performance, high temperature D.C. operation and uniformity have been evaluated for 1 μm gate AlGaN/GaN HEMTs grown by RF atomic nitrogen plasma MBE. Deposition and fabrication were performed on 2-inch (0001) sapphire substrates to determine process uniformity. HEMTs with 300 μm total gate width and dual gate finger geometry have been fabricated with 650–700 cm2 V−1×s mobility. Maximum frequency cut-offs on the order of 8–10 GHz were achieved. D.C. performance at room temperature was >500 mA mm−1, and external transconductance was >70 mS mm−1. The transistors operated at test temperatures of 425°C in air.  相似文献   

16.
Thin (3000–5000Å) low pressure chemically vapor deposited (LPCVD) films of polycrystalline silicon suitable for microelectronics applications have been deposited from silane at 600°C and at a pressure of 0.25 Torr. The films were phosphorus implanted at 150 KeV and electrically characterized with the annealing conditions and film thickness as parameters, over a resistivity range of four orders of magnitude (103–107Ω/□). Annealing during silox deposition was found to result in a lower film resistivity than annealing done in nitrogen atmosphere. Resistivity measurements as a function of temperature indicate that the electrical activation energy is a linear function of 1/N(N is the doping concentration), changing from 0.056 eV for a doping concentration of 8.9 × 1018 cm−3 to 0.310 eV for doping concentration of 3.3 × 1018 cm−3. The grain boundary trap density was found to have a logarithmically decreasing dependence on the polysilicon thickness, decreasing from 1.3 × 1013 cm−2 for 2850Å polysilicon film to 8.3 × 1012 cm−2 for 4500Å polysilicon film.  相似文献   

17.
Hydrogen as 2H was incorporated into ScAlMgO4 by both ion implantation and by exposure to a plasma at 250°C. In the implanted material diffusion begins at 500°C and most of the hydrogen is lost by ≤ 750°C. This thermal stability for hydrogen retention is considerably lower than for other substrate materials for GaN epilayer growth, such as Al2O3 and SiC. There is minimal permeation of 2H from a plasma at 250°C (DH ≤ 5 × 10−16 cm2 s−1) in ScAlMgO4, and thus unintentional hydrogen incorporation into GaN overlayers should be minimal at typical growth temperatures.  相似文献   

18.
We report the first fabrication of a GaSb n-channel modulation-doped field-effect transistor (MODFET) grown by molecular beam epitaxy. The modulation-doped structure exhibits a room temperature Hall mobility of 3140 cm2 V−1 s−1 and 77 K value of 16000 cm2 V−1 s−1, with corresponding sheet carrier densities of 1.3 × 1012 cm−2 and 1.2 × 1012 cm−2. Devices with 1 μm gate length yield transconductances of 180 mS mm−1 and output of 5 mS mm−1 at 85 K. The device characteristics indicate that electron transport in the channel occurs primarily via the L-valley of GaSb above 85 K. The effective electron saturation velocity is estimated to be 0.9 × 107 cm s−1. Calculations show that a complementary circuit consisting of GaSb n- and p-channel MODFETs can provide at least two times improvement in performance over AlGaAs/GaAs complementary circuits.  相似文献   

19.
The avalanche breakdown voltage of a GaAs hyperabrupt junction diode is calculated by using unequal ionization rates for electrons and holes, and shown graphically as a function of the parameters which characterize the impurity profile of the diode. The breakdown voltage decreases abruptly at the critical point of the characteristic length Lc which varies in accordance with the impurity concentration N0 at X = 0. For example, the critical length Lc is 7.7 × 10−6 cm and 3.3 × 10−5 cm for N0 = 1 × 1018 cm−3 and 1 × 1017 cm−3, respectively. The breakdown voltage of a diode with extremely short or long characteristic length can be estimated from the results for corresponding abrupt junctions. The experimental results agree well with the calculated ones.  相似文献   

20.
In this work the forward JV characteristics of 4H–SiC p–i–n diodes are analysed by means of a physics based device simulator tuned by comparison to experimental results. The circular devices have a diameter of 350 μm. The implanted anode region showed a plateau aluminium concentration of 6×1019 cm−3 located at the surface with a profile edge located at 0.2 μm and a profile tail crossing the n-type epilayer doping at 1.35 μm. Al atom ionization efficiency was carefully taken into account during the simulations. The final devices showed good rectifying properties and at room temperature a diode current density close to 370 A/cm2 could be measured at 5 V. The simulation results were in good agreement with the experimental data taken at temperatures up to about 523 K in the whole explored current range extending over nine orders of magnitude. Simulations also allowed to estimate the effect of a different p+ doping electrically effective profile on the device current handling capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号