首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the importance of lean and fat tissue depletion as determinants of the adaptive reduction in basal metabolic rate (BMR) in response to food deprivation by reanalyzing the data on BMR and body composition for the 32 men participating in the classic Minnesota experiment of semi-starvation and refeeding. We used individual data on BMR, body fat, and fat-free mass (FFM) assessed during the control (prestarvation) period, at weeks 12 and 24 of semistarvation (S12 and S24), and week 12 of restricted refeeding (R 12) to calculate an index of the reduction in thermogenesis at S12, S24, and R12, defined as the change in BMR adjusted for changes in FFM and fat mass, and an index of the state of depletion of the fat mass and FFM compartments at these times, defined as the deviation in fat mass or FFM relative to control values. The results indicated a positive relation between the reduction in thermogenesis and the degree of fat mass depletion (but not FFM depletion) during weight loss as well as during weight recovery (r = 0.5, P < 0.01). Furthermore, the residual variance was predicted by the initial (prestarvation) percentage fat and the cormic index (sitting height/height). Taken together, these results in normal-weight men responding to severe food deprivation reveal anthropometric predictors for human interindividual variability in the capacity for energy conservation and suggest that the adaptive reduction in BMR is partly determined by an autoregulatory feedback control system linking the state of depletion of fat stores to compensatory mechanisms that suppress thermogenesis.  相似文献   

2.
Laminin-2 is a component of skeletal and cardiac basal lamina expressed in normal mouse and human. Laminin alpha2 chain (LAMA2), however, is absent from muscles of some congenital muscular dystrophy patients and the dystrophia muscularis (dy/dy) mouse model. LAMA2 restoration was investigated following cell transplantation in vivo in dy/dy mouse. Allogeneic primary muscle cell cultures expressing the beta-galactosidase transgene under control of a muscular promoter, or histocompatible primary muscle cell cultures, were transplanted into dy/dy mouse muscles. FK506 immunosuppression was used in noncompatible models. All transplanted animals expressed LAMA2 in these immunologically-controlled models, and the degrees of LAMA2 restoration were shown to depend on the age of the animal at transplantation, on muscle pretreatment, and on duration time after transplantation in some cases. LAMA2 did not always colocalize with new or hybrid muscle fibers formed by the fusion of donor myoblasts. LAMA2 deposition around muscle fibers was often segmental and seemed to radiate from the center to the periphery of the injection site. Allogeneic conditionally immortalized pure myogenic cells expressing the beta-galactosidase transgene were characterized in vitro and in vivo. When injected into FK506-immunosuppressed dy/dy mice, these cells formed new or hybrid muscle fibers but essentially did not express LAMA2 in vivo. These data show that partial LAMA2 restoration is achieved in LAMA2-deficient dy/dy mouse by primary muscle cell culture transplantation. However, not all myoblasts, or myoblasts alone, or the muscle fibers they form are capable of LAMA2 secretion and deposition in vivo.  相似文献   

3.
BACKGROUND: Surface membrane dihydropyridine receptor Ca2+ channels may play a role in the response of malignant hyperthermia-susceptible skeletal muscle to volatile anesthetics. METHODS: We determined the effect of halothane, enflurane, and isoflurane on the binding of the Ca2+ channel blocker PN200-110 to skeletal muscle membranes isolated from malignant hyperthermia-susceptible and normal pigs. RESULTS: In the presence of 0.4 mM halothane, the maximal [3H]PN200-110 binding to both normal and malignant hyperthermia membranes was reduced by 37-43% (P < 0.05). There was no difference in the equilibrium constant for the halothane-dependent inhibition of [3H]PN200-110 binding to these two types of membranes. There also was no significant difference among halothane, enflurane, or isoflurane in their ability to inhibit [3H]PN200-110 binding to either normal or malignant hyperthermia membranes. CONCLUSIONS: Volatile anesthetics inhibit the binding of PN200-110 to skeletal muscle membranes by decreasing the number of functionally active dihydropyridine receptor proteins. This inhibition is similar for membranes isolated from both normal and malignant hyperthermia-susceptible muscle, thus providing no evidence for a halothane-induced functional defect in this protein in malignant hyperthermia-susceptible muscle. However, the results of this study also indicate that the mechanism by which volatile anesthetics decrease surface membrane Ca2+ currents in skeletal muscle is by reducing the number of functional dihydropyridine receptor Ca2+ channels.  相似文献   

4.
A 65-year-old woman developed nephrotic syndrome 7 years after receiving a cadaveric renal allograft. Renal biopsy and clinical laboratory evaluation revealed the underlying disease process to be AL amyloidosis. To our knowledge, this is the first reported case of de novo AL amyloid occurring in a renal allograft.  相似文献   

5.
The dy/dy mouse is an animal model for human merosin-negative congenital muscular dystrophy (CMD), which has been reported to have reduced or no expression of the basement membrane protein laminin alpha2. We here investigate various myogenic and nonmyogenic tissues of mature dy/dy and control 129ReJ mice histologically and for laminin alpha2 expression. In addition, expression patterns of laminin alpha1, alpha2, alpha4, and alpha5 chains, the interstitial proteins fibronectin and tenascin-C, and the adhesion molecules VCAM-1, ICAM-1, and alpha4 integrin were characterized in skeletal muscle of 1- and 7-day and mature (>6 weeks old) dy/dy and control 129ReJ mice. The laminin alpha2 chain remained detectable in myogenic tissues of dy/dy mice by immunofluorescence using two different monoclonal antibodies and by Northern blot analysis. However, laminin alpha2 expression was significantly reduced or not detectable in nonmyogenic tissues of dy/dy mice, including skin, lung, kidney, brain, thymus, and eye. Focal lesions were observed in mature skeletal muscle only, characterized by necrotic tissue, isolated VCAM-1- and ICAM-1-positive cells indicative of inflammatory processes, and regenerating muscle fibers surrounded by intense tenascin-C and fibronectin expression. In contrast to studies on human CMD muscle, laminin alpha1 was not detectable in either dy/dy or control skeletal muscle using immunofluorescence or Northern blot analysis. Immunofluorescence localized laminin alpha4 to basement membranes of blood vessels, the endoneurium of the intramuscular nerves, and the neuromuscular junction in skeletal muscle of 1- and 7-day-old dy/dy and control mice. In mature muscle, laminin alpha4 expression shifted to the perineurium of intramuscular nerves in both dy/dy and control mice. Furthermore, strong upregulation of laminin alpha4 in the basement membranes of blood vessels, the perineurium of intramuscular nerves, and of isolated regenerating muscle fibers in the dy/dy mice was apparent. Investigation of 1-day-old animals revealed expression of laminin alpha5 in skeletal muscle fiber basement membranes of dy/dy but not control animals. This difference between dy/dy and control animals was no longer apparent at 7 days after birth, indicating a temporary shift in expression pattern of laminin alpha5 in dy/dy animals. Analysis of the extracellular matrix components of 1- and 7-day-old dy/dy and control skeletal muscle revealed an early onset of the dystrophy, even before histopathological features of the disease were evident. Our data confirm the absence of laminin alpha1 chain in myogenic tissues of both dy/dy and control mice and suggest compensation for reduced laminin alpha2 in dy/dy skeletal muscle by laminin alpha4 and, in early development, also laminin alpha5. These results have significant ramifications in the diagnosis of human merosin-negative CMD.  相似文献   

6.
In this study we have expressed and characterized recombinant cardiac and skeletal muscle sodium channel alpha subunits in tsA-201 cells under identical experimental conditions. Unlike the Xenopus oocyte expression system, in tsA-201 cells (transformed human embryonic kidney) both channels seem to gate rapidly, as in native tissue. In general, hSkM1 gating seemed faster than hH1 both in terms of rate of inactivation and rate of recovery from inactivation as well as time to peak current. The midpoint of the steady-state inactivation curve was approximately 25 mV more negative for hH1 compared with hSkM1. In both isoforms, the steady-state channel availability relationships ("inactivation curves") shifted toward more negative membrane potentials with time. The cardiac isoform showed a minimal shift in the activation curve as a function of time after whole-cell dialysis, whereas hSkM1 showed a continued and marked negative shift in the activation voltage dependence of channel gating. This observation suggests that the mechanism underlying the shift in inactivation voltage dependence may be similar to the one that is causing the shift in the activation voltage dependence in hSkM1 but that this is uncoupled in the cardiac isoform. These results demonstrate the utility and limitations of measuring cardiac and skeletal muscle recombinant Na+ channels in tsA-201 cells. This baseline characterization will be useful for future investigations on channel mutants and pharmacology.  相似文献   

7.
alpha-Dystrobrevin is both a dystrophin homologue and a component of the dystrophin protein complex. Alternative splicing yields five forms, of which two predominate in skeletal muscle: full-length alpha-dystrobrevin-1 (84 kD), and COOH-terminal truncated alpha-dystrobrevin-2 (65 kD). Using isoform-specific antibodies, we find that alpha-dystrobrevin-2 is localized on the sarcolemma and at the neuromuscular synapse, where, like dystrophin, it is most concentrated in the depths of the postjunctional folds. alpha-Dystrobrevin-2 preferentially copurifies with dystrophin from muscle extracts. In contrast, alpha-dystrobrevin-1 is more highly restricted to the synapse, like the dystrophin homologue utrophin, and preferentially copurifies with utrophin. In yeast two-hybrid experiments and coimmunoprecipitation of in vitro-translated proteins, alpha-dystrobrevin-2 binds dystrophin, whereas alpha-dystrobrevin-1 binds both dystrophin and utrophin. alpha-Dystrobrevin-2 was lost from the nonsynaptic sarcolemma of dystrophin-deficient mdx mice, but was retained on the perisynaptic sarcolemma even in mice lacking both utrophin and dystrophin. In contrast, alpha-dystrobrevin-1 remained synaptically localized in mdx and utrophin-negative muscle, but was absent in double mutants. Thus, the distinct distributions of alpha-dystrobrevin-1 and -2 can be partly explained by specific associations with utrophin and dystrophin, but other factors are also involved. These results show that alternative splicing confers distinct properties of association on the alpha-dystrobrevins.  相似文献   

8.
Ribonucleotide reductase is essential for DNA synthesis in cycling cells. It has been previously shown that the catalytically competent tyrosyl free radical of its small R2 subunit (R2-Y.) is scavenged in tumor cells co-cultured with macrophages expressing a nitric oxide synthase II activity. We now demonstrate a loss of R2-Y. induced either by .NO or peroxynitrite in vitro. The .NO effect is reversible and followed by an increase in ferric iron release from mouse protein R2. A similar increased iron lability in radical-free, diferric metR2 protein suggests reciprocal stabilizing interactions between R2-Y. and the diiron center in the mouse protein. Scavenging of R2-Y. by peroxynitrite is irreversible and paralleled to an irreversible loss of R2 activity. Formation of nitrotyrosine and dihydroxyphenylalanine was also detected in peroxynitrite-modified protein R2. In R2-overexpressing tumor cells co-cultured with activated murine macrophages, scavenging of R2-Y. following NO synthase II induction was fully reversible, even when endogenous production of peroxynitrite was induced by triggering NADPH oxidase activity with a phorbol ester. Our results did not support the involvement of peroxynitrite in R2-Y. scavenging by macrophage .NO synthase II activity. They confirmed the preponderant physiological role of .NO in the process.  相似文献   

9.
To explore the potential role of Rab GTPases in human insulin resistance, we first employed a PCR-cloning approach to identify Rab isoforms that are expressed in human skeletal muscle. Multiple Rab isoforms including Rab1A, Rab4A, Rab5B, Rab7, Rab8, Rab10, Rab12A, Rab13, Rab18, Rab21, and Rab22 mRNA were found to be expressed in human skeletal muscle. The second goal was to examine whether mRNA expression for Rabs targeted to endocytotic/exocytotic compartments was altered as a function of insulin resistance. Quantitative PCR analysis demonstrated that Rab4A, Rab5B and Rab18 mRNA levels in skeletal muscle from insulin-resistant patients without (IR) and with non-insulin-dependent diabetes mellitus (NIDDM) were not significantly different from those in insulin-sensitive controls (IS). At the protein level, total Rab5B amount was not significantly different among IS, IR and NIDDM subgroups. However, in basal muscle, Rab5B in the total membrane fraction was 2.1-3.6 fold higher in IR and NIDDM than in IS subjects. Insulin increased membrane-associated Rab5B by 3-fold in IS subjects, whereas this effect was not significant in both IR and NIDDM subgroups. Thus, for the first time, we have comprehensively studied the mRNA expression of Rab isoforms in human muscle. The phlethora of Rab GTPases are indicative of high volume of vesicular traffic and regulated metabolism. The potential role of specific Rab isoforms in insulin resistance does not rely on a change in steady state mRNA levels, but is demonstrable as an alteration in protein subcellular distribution and trafficking.  相似文献   

10.
Cytotoxic effects of normal mouse serum on mouse tumor cells were investigated in vitro. When FE melanoma cells of C57BL/6 mouse origin, were cultured in medium containing 1% fetal calf serum (FCS) and 10-30% C57BL/6 mouse serum, number of viable FE cells markedly decreased after a little increase in their number, indicating cell death of FE cells in culture with mouse serum. Phase-contrast microscopic examination showed appearance of fatty degeneration in FE cells after 24 h, and an increase in cell death after 48 h. Electron microscopic examination, and agarose gel electrophoresis of DNA at 72 h of culture showed that their cell death occurred as necrosis. This cytotoxic effect of mouse serum was also found in culture of combinations of C57BL/6 mouse serum and C57BL/6 mouse melanoma cells (G6 cells), and BALB/c mouse serum and various BALB/c mouse tumor cells (G-5 and G-1 liver tumor cells, and Colon 26 cells). Furthermore, sera of BALB/c and B10D2 mice also showed the cytotoxic effect on FE cells. The cytotoxic effect of mouse serum was not ascribed to complement activity because all mouse sera were treated at 56 degrees C for 30 min before use, and this heat treatment completely abolished complement activity, and because serum of C5-deficient mice also showed the cytotoxic effect. This cytotoxic activity was stable at heat treatment at 100 degrees C for 10 min, and was in a serum fraction of molecular weights more than 30,000 dalton. The present results show that normal mouse serum has a factor(s) inducing fatty degeneration and necrosis of mouse tumor cells.  相似文献   

11.
In skeletal muscle fibers, the high-capacity medium-affinity Ca(2+)-binding protein calsequestrin functions as the major Ca(2+)-reservoir of the sarcoplasmic reticulum. To determine the oligomeric status of calsequestrin, immunoblotting of microsomal proteins following chemical crosslinking was performed. Diagonal non-reducing/reducing two-dimensional gel electrophoresis was employed to unequivocally differentiate between cross-linked species of 63 kDa calsequestrin and calsequestrin-like proteins of higher relative molecular mass. Since chronic low-frequency stimulation has a profound effect on the expression of many muscle-specific protein isoforms, we investigated normal and conditioned muscle fibers. Calsequestrin was found to exist in a wide range of high-molecular-mass clusters in normal and chronically stimulated skeletal muscle fibers. Hence, oligomerization is an intrinsic property of this important Ca(2+)-binding protein and does not appear to be influenced by the fast-to-slow transformation process. Although fiber-type specific differences exist in the physiology of the skeletal muscle Ca(2+)-regulatory system, oligomerization of calsequestrin seems to be essential for proper functioning.  相似文献   

12.
The mouse LSP1 protein is an F-actin binding protein initially isolated as a cDNA from the BALB/c pre-B cell line 220.2. Its expression pattern is highly restricted. Only lymphocytes and lymphoma cell lines were reported to express LSP1. Non-lymphoid cell lines or normal mouse tissues such as brain, lung, liver, skeletal muscle, kidney or testis do not express LSP1. Here we report that mouse macrophage cell lines also express LSP1 mRNA and protein. DNA sequence analysis shows that the coding sequence of LSP1 RNA expressed in the macrophage cell line P388D1 is identical to the sequence of LSP1 RNA from the pre-B cell line 220.2. To determine the expression of LSP1 RNA in normal macrophages derived from fetal liver and adult bone marrow and in other hematopoietic cells we used a recently described technique to make representative amplified polyA cDNA samples from small numbers of cells or isolated hematopoietic colonies. Analysis of these cDNA samples with an LSP1 cDNA probe showed that eight of nine macrophage samples expressed LSP1 RNA. One of two neutrophil samples but none of eight other non-lymphoid colonies was positive for LSP1 RNA. From these results it appears that the expression of LSP1 RNA in the hematopoietic system is restricted to the lymphocyte, macrophage and neutrophil lineages.  相似文献   

13.
Human cancers express organ-specific neoantigens (OSNs) which elicit specific cellular immune responses in the cancer patient, as demonstrated by leukocyte adherence inhibition (LAI), an in vitro immune response assay. A purified protein of MW 40,000 (p40) exhibiting OSN (colon specific) activity was cleaved into specific peptide fragments and their partial amino acid sequences determined. This information was used in the polymerase chain reaction (PCR) to obtain a 992 bp cDNA clone (PCR-992) from a human colon adenocarcinoma cell line (LS-180). By comparison of the predicted amino acid sequence of PCR-992 with the known sequence of p40 peptides, PCR-992 was shown to correspond to almost the entire coding region of p40. Nucleotide sequence analysis suggested that the protein was mycoplasmal in origin due to its high A+T content (76%) and the presence of five in frame TGA termination codons; at least two of the latter are actually read as tryptophan, a known feature of mycoplasma translation. We have confirmed this origin by direct isolation of a contaminating mycoplasma species from the LS-180 cell line and demonstration that it could be hybridized with the PCR-992 probe. Northern and PCR analysis of RNA preparations from the contaminated LS-180 cell line showed that p40 was part of the high affinity transport system operon of Mycoplasma hyorhinis (Dudler et al, EMBO J., 7: 3963-3970, 1988). Total protein lysates of Mycoplasma hyorhinis cultivated without animal cells could elicit positive LAI responses when incubated with cancer patient leukocytes but not with normal patient leukocytes. The organ-specific nature of the response was, however, not observed indicating that host cell-mycoplasmal interactions may play a role in determining the organ-specific nature of p40 seen with the LAI. The significance of these findings will be discussed in the context of previous thinking regarding the origin of OSNs.  相似文献   

14.
Single-channel recordings from mouse C2 myotubes indicate that maturation of skeletal muscle is accompanied by the appearance of two types of fast acetylcholine (ACh) receptor channels that are each functionally distinct from the embryonic receptor type present at early stages of differentiation. The embryonic receptor type has a low conductance (45 pS) and long channel open time, rendering slowly decaying synaptic currents. One fast channel type that appears during muscle maturation is distinguished from the embryonic receptor type on the basis of both higher conductance (65 pS) and shorter open time. However, single-channel recordings from differentiated mouse skeletal muscle cell line (C2) point to the existence of a second fast receptor type, which has a conductance similar to the embryonic receptor type (45 pS), yet significantly reduced mean channel open time. Analyses of individual channel function at high ACh concentrations directly demonstrate the coexistence of two kinetically distinct types of 45 pS ACh receptors. Openings by fast type and slow embryonic type of 45 pS receptors occurred in bursts, allowing distinction on the basis of both mean open time and open probability for individual receptors. The embryonic type of 45 pS receptor has an open time approximately twofold longer than the fast-receptor counterpart. Additional differences were reflected in the open probability distributions for fast and slow 45 pS receptor types. Both types of 45 pS receptor were kinetically distinguishable from the 65 pS receptor. We found no support for the idea that the slow and fast 45 pS receptor types result from the interconversion of dual gating modes involving the same receptor protein. Our results are consistent with the idea that the acquisition of fast synaptic current decay, required at mature neuromuscular synapses, is the result of the up-regulation of two distinct fast types of nicotinic ACh receptors during skeletal muscle development.  相似文献   

15.
We compared risk factor-adjusted mortality for California adults with developmental disabilities based on 22,576 adults receiving services in California, 1985-1994. Mortality rates were adjusted for factors such as age and level of functioning. Risk factor-adjusted mortality was 72% higher in community care than in institutions. The mortality pattern over the years 1993-1994, which had not previously been studied, was comparable to that of 1985-1992. The substantially increased risk in community care suggests that community settings may be less effective in preventing mortality in this population.  相似文献   

16.
The nicotinic acetylcholine receptors (AChRs) from Torpedo electric organ and mouse muscles when expressed in Xenopus oocytes desensitize with different time courses. Initially, the role of cAMP-dependent phosphorylation on the gamma subunits in the different desensitization rates was investigated by expressing normal and mutant AChRs in the oocytes cultured in the presence of gentamicin. Mutant Torpedo AChRs lacking the potential cAMP-dependent phosphorylation sites in the gamma subunit appear to desensitize like normal Torpedo AChRs. Similarly, mutant mouse extrajunctional AChRs containing a newly created phosphorylation site in the gamma subunit appeared to desensitize like normal mouse AChRs, which lack the potential cAMP-dependent phosphorylation site in the gamma subunit. These results suggest that different rates of desensitization between the Torpedo and muscle extrajunctional AChRs are not attributable to differential cAMP-dependent phosphorylation of these AChRs. Subsequently, to determine whether gentamicin used in culturing oocytes differentially interacts with muscle junctional and extrajunctional AChRs, we analyzed rates of current decay following different gentamicin treatments. Both chronic and acute treatment with gentamicin profoundly accelerated the decay of whole-cell currents mediated by both types of AChR. The effect of prolonged gentamicin treatment on junctional AChRs was long lasting when compared to treatment on extrajunctional AChRs. Although the two types of AChR still desensitize differently in the absence of gentamicin, these results suggest that the characteristic desensitization of junctional and extrajunctional AChRs observed previously is largely due to differential interactions of gentamicin with the two types of AChR.  相似文献   

17.
OBJECTIVE: To determine the outcome, safety, and possible cost savings of patients undergoing weekend or holiday exercise treadmill testing. DESIGN: Medical records of all 195 patients scheduled for weekend and holiday exercise testing were reviewed, and 77.9% of patients were contacted by telephone to ascertain medical outcomes and need for further emergency department or inpatient care. Costs were calculated from estimates of days of hospitalization saved and incremental costs incurred in conjunction with weekend or holiday testing. SETTING: Urban tertiary care academic medical center. PATIENTS: A total of 195 patients were scheduled for testing, and 181 tests were performed. Over three quarters (75.1%) of patients underwent testing for assessment of chest pain. Other indications included risk stratification after myocardial infarction or coronary angioplasty or prior to noncardiac surgery, or evaluation for arrhythmias, dyspnea, or syncope. MEASUREMENTS AND MAIN RESULTS: Outcomes included results and complications of testing, hospital course after testing, subsequent emergency department visits and readmissions, myocardial infarction, need for cardiac catheterization or revascularization, and mortality. No complications were noted during testing. In 136 patients tested for the indication of chest pain, 90 (66.2%) had negative tests, 39 (28. 7%) were intermediate, and 6 (4.4%) were positive for ischemia. Same day discharge occurred in 115 (84.6%) of the patients, saving an estimated 185 days of hospitalization ($316.83 per patient tested). Event rates over the 6 months following discharge were low. CONCLUSIONS: Weekend and holiday exercise testing is a safe and effective means of risk stratification prior to hospital discharge for patients with chest pain. It also reduces length of stay and is cost saving.  相似文献   

18.
A chymotrypsin-like proteinase, designated myonase, was successfully purified to homogeneity from X-chromosome linked muscular dystrophic mouse skeletal muscle by affinity chromatography on agarose conjugated with lima bean trypsin inhibitor as ligand. The molecular mass of the purified myonase was determined to be 26 kDa by SDS-PAGE and to be 25,187 Da by mass spectrometry. The native enzyme is a single chain molecule and a monomeric protein without sugar side-chains. The nucleotide sequence of myonase mRNA is similar to mouse mast cell proteinase 4 (MMCP-4) cDNA. This is the first report of a native enzyme whose amino acid sequence closely corresponds to MMCP-4 cDNA. Myonase has chymotrypsin-like activities and hydrolyzes the amide bonds of synthetic substrates having Tyr and Phe residues at the P1 position. Myonase is most active at pH 9 and at high concentration of salts. Myonase preferentially hydrolyzes the Tyr4-Ile5 bond of angiotensin I and the Phe20-Ala21 bond of amyloid beta-protein, and it is less active towards the Phe8-His9 bond of angiotensin I and the Phe4-Ala5 and Tyr10-Glu11 bonds of amyloid beta-protein. Myonase is completely inhibited by such serine proteinase inhibitors as chymostatin, diisopropylfluorophosphate and phenylmethylsulfonyl fluoride, but not by p-tosyl-L-phenylalanine chloromethyl ketone, p-tosyl-L-lysine chloromethyl ketone, pepstatin, E-64, EDTA, and o-phenanthroline. It is also inhibited by lima bean trypsin inhibitor, soy bean trypsin inhibitor, and human plasma alpha1-antichymotrysin. These properties match those of chymase, but unlike chymase, myonase does not interact with heparin in the regulation of its activity. Myonase was immunohistochemically localized in myocytes, but not in mast cells.  相似文献   

19.
Skeletal muscle ischemia and reperfusion is now recognized as one form of acute inflammation in which activated leukocytes play a key role. Although restoration of flow is essential in alleviating ischemic injury, reperfusion initiates a complex series of reactions which lead to neutrophil accumulation, microvascular barrier disruption, and edema formation. A large body of evidence exists which suggests that leukocyte adhesion to and emigration across postcapillary venules plays a crucial role in the genesis of reperfusion injury in skeletal muscle. Reactive oxygen species generated by xanthine oxidase and other enzymes promote the formation of proinflammatory stimuli, modify the expression of adhesion molecules on the surface of leukocytes and endothelial cells, and reduce the bioavailability of the potent antiadhesive agent nitric oxide. As a consequence of these events, leukocytes begin to form loose adhesive interactions with postcapillary venular endothelium (leukocyte rolling). If the proinflammatory stimulus is sufficient, leukocytes may become firmly adherent (stationary adhesion) to the venular endothelium. Those leukocytes which become firmly adherent may then diapedese into the perivascular space. The emigrated leukocytes induce parenchymal cell injury via a directed release of oxidants and hydrolytic enzymes. In addition, the emigrating leukocytes also exacerbate ischemic injury by disrupting the microvascular barrier during their egress across the vasculature. As a consequence of this increase in microvascular permeability, transcapillary fluid filtration is enhanced and edema results. The resultant increase in interstitial tissue pressure physically compresses the capillaries, thereby preventing microvascular perfusion and thus promoting the development of the no-reflow phenomenon. The purpose of this review is to summarize the available information regarding these mechanisms of skeletal muscle ischemia/reperfusion injury.  相似文献   

20.
The nature of maltose- and trehalose-induced electrical potential increments across everted small intestines of toads were investigated. A Michaelis-Menten-like relation was seen between the amplitude of PD increments (deltaPD) and the mucosal concentration of disaccharides over a wide range of concentration, but, at a higher concentration range, Lineweaver-Burk type plot of data always deviated from the linear line for the low and moderate concentration range. The extrapolation of the linear segment of the plots intercepted the ordinate at the same point as that of the line for the glucose-induced potential increments. Both the disaccharide- and the glucose-evoked potentials were not additive and were equally sensitive to phlorizin. Tris depressed the disaccharide-evoked potentials to about the same extent as that of inhibition of enzyme activities. The amplitude and time course of the disaccharide-induced potentials, however, could not be accounted for by the mucosal concentration of liberated glucose. These qualitative and quantitative characteristics were explained properly on the basis of a simple well-type local pool for liberated glucose assumed to exist at the brush border. In conclusion, a close functional linkage between brush border membrane disaccharidase activities and the electrogenic hexose transport is well reflected in the disaccharide-evoked potentials in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号