首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The periodontal ligament (PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. To characterize PDL cells at the molecular level, we constructed a cDNA library from bovine PDL tissue. We then focused on the isolation of S100 calcium-binding proteins (CaBPs), because they mediate Ca2+ signaling and control important cellular processes such as differentiation and metabolism. We screened the PDL cDNA library with a mouse S100A4 cDNA, and cloned the bovine cDNAs of two S100 CaBPs (S100A4 and S100A2). In northern blotting analysis, the highest expression of S100A4 was detected in PDL from erupted teeth (PDLE). PDL from teeth under eruption (PDLU) showed a lower expression of S100A4, and its expression in gingiva was faintly detectable. S100A4 expression was also high in the pulp tissue followed by the dental papilla of the tooth germ. S100A2 expression was high in PDLE and gingiva. Interestingly, only PDLE exhibited a high expression of both S100A4 and S100A2. PDLE also expressed the highest level of beta-actin, a target cytoskeletal protein for S100A4. It is conceivable that the high expression of S100A4 in PDLE is a result of the maturation of the PDL and/or a response to mechanical stress generated by mastication. Since there was a marked difference of S100A4 expression between PDL and gingiva, we propose that S100A4 could be a useful marker for distinguishing cells from these two tissues.  相似文献   

2.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5 degreesC). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5 degreesC, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5 degreesC that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32 degreesC). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

3.
PURPOSE/OBJECTIVES: To discuss the causes, clinical manifestations, and consequences of diarrhea in the patient with cancer; to describe the oncology nurse's role in the assessment, management, and treatment of cancer-related diarrhea. DATA SOURCES: Synthesis of published peer-reviewed data, professional experience. DATA SYNTHESIS: The many causes of cancer-related diarrhea include specific types of cancer and specific anticancer treatment regimens (e.g., chemotherapy, radiotherapy). Poorly controlled diarrhea may result in a range of physiologic and psychological effects that extend beyond the patient to significant others and caregivers. Comprehensive assessment of diarrhea is the foundation for the appropriate use of pharmacologic and supportive therapies. CONCLUSIONS: Diarrhea, much like fatigue, is a symptom that only recently has become a focus of oncology nursing research and focused intervention. IMPLICATIONS FOR NURSING PRACTICE: Oncology nurses can significantly influence the quality of care given to patients who develop diarrhea as a symptom of cancer or as a sequela of cancer therapy. As such, oncology nurses are challenged to maintain current knowledge of the causes and available treatment strategies for cancer-related diarrhea. Nurses need to rely on their experiential skill and a working knowledge of published research to identify patients at risk. They also must communicate effectively with patients and caregivers in every practice setting about the nature of diarrhea and its causes, as well as develop appropriate interventions for each individual.  相似文献   

4.
Calcium influx from the extracellular space elicited by activation of heterotrimeric G protein-coupled and heptahelical receptors plays a critical role in transmembrane signal transduction in a wide variety of cell systems. In nonexcitable cells, the precise voltage-independent mechanism by which calcium enters the cell remains unknown. Multiple mechanisms appear to be operating in different cell types (1-3): 1. G protein-operated calcium influx, 2. Second messenger-operated calcium influx, 3. Capacitative calcium influx, and 4. Phosphorylation of calcium channels. Receptor-operated calcium channels have a fundamental role in stimulus-secretion coupling in many different cells, but these channels remain to be purified and cloned. This review proposes that receptor-operated calcium influx is mediated by protein tyrosine kinase pathways. The function of protein tyrosine kinase pathways and their interactions with other receptor-operated calcium influx mechanisms are described.  相似文献   

5.
BACKGROUND: Glomerulonephritis is characterized by the accumulation of extracellular matrix protein within the glomerulus. This process, when allowed to proceed unimpeded, leads to glomerulosclerosis and eventually to cessation of glomerular filtration. There is evidence that protein kinase C (PKC) activation plays an important role in mediating at least some of the effects of TGF-beta in vascular smooth-muscle cells. The current study was undertaken to determine whether PKC activity is required for both TGF-beta and angiotensin II (Ang II) to induce mesangial cell matrix protein secretion. METHODS: PKC was inhibited by two separate methods, and [3H]thymidine incorporation was assessed in both the presence and the absence of PKC inhibition. Conditioned medium from cells stimulated with TGF-beta or Ang II was collected and analysed for secreted matrix proteins and sulphated proteins by SDS-polyacrylamide gel electrophoresis and western blotting. RESULTS: Twenty-four-hour incubation of rat mesangial cells with phorbol-12-myristate-13-acetate (PMA) reduced total PKC activity to basal levels. Both TGF-beta and Ang II were mitogenic in mesangial cells, and chronic PMA pre-incubation inhibited this DNA synthesis. TGF-beta-and Ang-II-induced sulphated protein secretion into conditioned medium was markedly attenuated in PKC-downregulated cells. Secretion of the specific matrix proteins laminin and fibronectin by mesangial cells stimulated with either TGF-beta or Ang II was also diminished in PKC-downregulated cells and in cells pre-incubated with the specific PKC inhibitor, chelerythrine. There was no evidence of generalized cell toxicity or decreased non-specific protein synthesis caused by these PKC inhibitors. CONCLUSIONS: PKC is a key intermediary in the process by which TGF-beta and Ang II cause DNA synthesis and mesangial cell matrix protein production. Thus, PKC inhibitors deserve further study as potential therapeutic agents for a variety of glomerular diseases.  相似文献   

6.
Inspection of the amino acid sequence of the non-structural region of the hepatitis C virus (HCV) gene product reveals a sequence of 14 amino acids, Arg1487-Arg-Gly-Arg-Thr-Gly-Arg-Gly-Arg-Arg-Gly-Ile-Tyr-Arg1500 , located in the non-structural protein, NS3. This sequence is highly similar to the inhibitory site of the heat-stable inhibitor of cAMP-dependent protein kinase (PKA) and to the autophosphorylation site in the hinge region of the PKA type II regulatory domain. A synthetic peptide that corresponds to the HCV sequence above and a set of shorter analogues act as competitive inhibitors of PKA. A 43.5-kDa fragment of NS3 that consists of residues 1189-1525 of the HCV polyprotein inhibits PKA in a similar range to the investigated synthetic peptides. In contrast to the short peptides, which show competitive inhibition, HCV-polyprotein-(1189-1525) influences PKA in a mixed-inhibition-type manner. A possible mechanism explaining these differences is the formation of complexes that consist of the protein substrate, the enzyme and the HCV-polyprotein-(1189-1525). Binding studies with PKA and the non-hydrolysable ATP analogue [14C]fluorosulfonylbenzoyladenosine and [3H]cAMP do not reveal any influence of the short HCV-derived peptides or HCV-polyprotein-(1189-1525) upon the affinity of PKA for these nucleotides. The complex interactions of the NS3 fragments could influence one of the most important signal pathways of the cell and, therefore, could possibly provide new pathological mechanisms for HCV infections of liver.  相似文献   

7.
8.
Ischemic preconditioning (I-PC) occurs via activation of protein kinase C (PKC). This study was undertaken to determine whether pharmacologic preconditioning by beta-adrenergic stimulation (beta-PC) is mediated by PKC activation. Isolated rat hearts were subjected to 40-min ischemia and 30-min reperfusion. Beta-PC was induced by 0.25 microM isoproterenol pretreatment for 2 min followed by 10-min normoxic perfusion. Beta-PC enhanced the recovery of rate-pressure product of the ischemic/reperfused heart (79.1 +/- 8.4% vs. 12.4 +/- 1.6% of initial for Non-PC group, n = 6) and attenuated the release of creatine kinase during 30-min reperfusion (30.2 +/- 2.2 vs. 59.8 +/- 6.1 nmol/min/g wet wt for Non-PC group, n = 6), similar to an I-PC stimulus of 5-min ischemia and 5-min reperfusion. Treatment with 50 microM polymyxin B, a PKC inhibitor, abolished the cardioprotection of both beta-PC and I-PC. Furthermore, similar changes in subcellular distribution of PKC were induced by both beta-PC and I-PC. The changes in subcellular distribution of PKC-delta suggested its translocation from cytosol to membrane fraction, a marker of PKC activation. These results suggest that the cardioprotection induced by beta-PC, like I-PC, is mediated by PKC activation.  相似文献   

9.
The CD4 protein is expressed on a subset of human T lymphocytes that recognize antigen in the context of major histocompatibility complex (MHC) class II molecules. Using Chinese hamster ovary (CHO) cells expressing human CD4, we have previously demonstrated that the CD4 protein can mediate cell adhesion by direct interaction with MHC class II molecules. In T lymphocytes, CD4 can also function as a signaling molecule, presumably through its intracellular association with p56lck, a member of the src family of protein tyrosine kinases. In the present report, we show that p56lck can affect cell adhesion mediated by CD4 and MHC class II molecules. The expression of wild-type p56lck in CHO-CD4 cells augments the binding of MHC class II+ B cells, whereas the expression of a mutant p56lck protein with elevated tyrosine kinase activity results in decreased binding of MHC class II+ B cells. Using site-specific mutants of p56lck, we demonstrate that the both the enzymatic activity of p56lck and its association with CD4 are required for this effect on CD4/MHC class II adhesion. Further, the binding of MHC class II+ B cells induces CD4 at the cell surface to become organized into structures resembling adhesions-type junctions. Both wild-type and mutant forms of p56lck influence CD4-mediated adhesion by regulating the formation of these structures. The wild-type lck protein enhances CD4/MHC class II adhesion by augmenting the formation of CD4-associated adherens junctions whereas the elevated tyrosine kinase activity of the mutant p56lck decreases CD4-mediated cell adhesion by preventing the formation of these structures.  相似文献   

10.
PURPOSE: The purpose of this study was to compare the response in contractility of the right (RV) and left (LV) ventricle of the heart to beta-adrenergic stimulation using an echo planar MR technique. METHOD: In six sheep, RV and LV pressure-volume (P-V) relationships were constructed simultaneously using intraventricular pressures and volumes measured with echo planar MRI at rest and during dobutamine stress. Contractility changes were quantified by assessment of the end-systolic P-V relationship (ESPVR) and the preload recruitable stroke work (PRSW). RESULTS: Both the ESPVR the the PRSW showed a significant increase in contractility for both ventricles after dobutamine administration. The increase in contractility was significantly larger for the LV than for the RV, both measured wit the ESPVR (p < 0.0003) and the PRSW (p < 0.007). CONCLUSION: This study shows the usefulness of echo planar MRI to assess myocardial contractility of both ventricles simultaneously. Furthermore, the study shows that beta-adrenergic stimulation has a significantly greater positive inotropic effect on LV contractility than on RV contractility.  相似文献   

11.
p38 is a member of the mitogen-activated protein (MAP) kinase superfamily activated by stress signals and implicated in cellular processes involving inflammation and apoptosis. Unlike the extracellular signal-regulated kinases (p42 and p44 MAP kinases), which are stimulated by insulin in many cell types, p38 activity is inhibited by insulin in postmitotic fetal neurons for which insulin is a potent survival factor (Heidenreich, K. A., and Kummer, J. L. (1996) J. Biol. Chem. 271, 9891-9894). These data suggested that insulin's effects on neuronal survival are mediated by inhibition of a p38-mediated apoptotic pathway. To better understand the relationship between p38 activity and cell survival, we induced apoptosis in two cell lines and examined the ability of insulin or a specific p38 inhibitor (a pyridinyl imidazole compound PD169316) to block p38 activity and cell death. In Rat-1 fibroblasts grown in the presence of serum, p38 activity was undetectable by immune complex assays, and the number of apoptotic cells was very low (<0.5%). After the removal of serum for 16 h, p38 activity was markedly elevated, and apoptosis increased by 14-15-fold. Insulin (50 ng/ml) inhibited p38 activity by approximately 70% and blocked apoptosis by at least 80%. PD169316 also blocked p38 enzyme activity and apoptosis by approximately 80%. Similar results were obtained in differentiated PC12 cells that were deprived of nerve growth factor (NGF) for 16 h. In the presence of NGF, p38 activity and the number of apoptotic cells was very low (approximately 1.0%). After NGF withdrawal, p38 activity was selectively elevated and apoptosis increased to 15%. Both insulin and PD169316 markedly blocked the increase in p38 activity and apoptosis. The MAP kinase kinase inhibitor, PD98059, had no effect on apoptosis in Rat-1 fibroblasts and only partially blocked apoptosis in PC12 cells. PD98059 did not influence insulin's ability to block apoptosis, indicating that the extracellular signal-regulated kinase pathway does not mediate insulin's survival effects. These data further support the role of p38 in cellular apoptosis and support the hypothesis that insulin promotes cell survival, at least in part, by inhibiting the p38 pathway.  相似文献   

12.
Adrenal glucocorticoids exert powerful effects on cellular excitability in neuroendocrine cells and neurons, although the underlying mechanisms are poorly understood. In metabolically intact mouse anterior pituitary corticotrope (AtT20) cells glucocorticoid-induced proteins render large conductance calcium-activated potassium (BK) channels insensitive to inhibition by protein kinase A (PKA). In this study we have addressed whether this action of glucocorticoids is mediated via protein phosphatase activity at the level of single BK channels. In isolated inside-out patches from control AtT20 cells BK channels (125 pS) were inhibited by activation of closely associated PKA. Pretreatment (2 h) of cells with 1 microM dexamethasone before patch excision did not modify the intrinsic properties or expression levels of BK channel alpha-subunits in AtT20 cells. However, PKA-mediated inhibition of BK channel activity in isolated patches from steroid-treated cells was severely blunted. This effect of steroid was not observed using adenosine 5'-O-(3-thiotriphosphate) as phosphate donor or on exposure of the intracellular face of the patch with 10 nM of the protein phosphatase inhibitors okadaic acid or calyculin A but was mimicked by application of protein phosphatase 2A (PP2A) to the intracellular face of patches from control cells. Glucocorticoids did not modify total PP2A activity in AtT20 cells, suggesting that modified PP2A-like phosphatase activity closely associated with BK channels is required for glucocorticoid action.  相似文献   

13.
Endothelin (ET) is a vasoconstrictor peptide released from endothelial cells that is known to cause prostaglandin release. The mechanism remains unclear. To determine whether the protein kinase C (PKC) signaling pathway is stimulated by endothelin, we pretreated rat aortic rings with either PKC activator or inhibitors and measured the release of prostacyclin (PGI2) by radioimmunoassay. ET (10(-9) M) produced a 10-fold increase in PGI2 release. Pretreatment with 10(-9) M of three different PKC inhibitors, 1-(5-isoquinolinesulfonyl)piperazine(CL), staurosporine, and 1-(5-isoquinolinesulfonyltmethyl)piperazine (H7), blocked ET-induced PGI2 release. ET-induced PGI2 release was also blocked by pretreatment with inhibitors of either phospholipase A2 7,7-dimethyleicosadienoic acid or trifluoromethyl ketone analogue) (10(-9) M) or cyclooxygenase (indomethacin) (10(-9) M). We conclude that ET activates PKC, which activates phospholipase A2, which liberates arachidonic acid, which increases PGI2 production and release.  相似文献   

14.
We cloned a gene for Na+/H+ antiporter from chromosomal DNA of Pseudomonas aeruginosa. Introduction of the gene into host Escherichia coli mutant cells lacking all of the major Na+/H+ antiporters enabled the cells to grow in the presence of 0.2 M NaCl, although the original host cells could not. Membrane vesicles prepared from cells of the transformant possessing the cloned gene showed Na+/H+ antiport activity. As a result of DNA sequencing, we found one open reading frame (nhaP). The deduced amino acid sequence suggests that the Na+/H+ antiporter (NhaP) of P. aeruginosa consists of 424 amino acid residues with molecular mass of 45486 Da, and hydropathy analysis suggested the presence of 12 putative transmembrane domains. We found no bacterial Na+/H+ antiporter which showed significant sequence similarity with the NhaP in the protein sequence database. The NhaP showed partial sequence similarity with animal Na+/H+ exchangers. Thus, the NhaP of P. aeruginosa is unique among bacterial antiporters.  相似文献   

15.
16.
Mts1 protein (S100A4 according to a new classification) has been implicated in the formation of the metastatic phenotype via regulation of cell motility and invasiveness. Previously we have demonstrated that Mts1 protein interacted with the heavy chain of nonmuscle myosin in a calcium-dependent manner. To elucidate the role of the Mts1-myosin interaction, we mapped the Mts1-binding region on the myosin heavy chain molecule. We prepared proteolytically digested platelet myosin and a series of overlapped myosin heavy chain protein fragments and used them in a blot overlay with Mts1 protein. Here we report that the Mts1-binding site is located within a 29-amino acid region, at the C-terminal end of the myosin heavy chain (between 1909-1937 amino acids). Two-dimensional phosphopeptide analysis showed that Mts1 protein inhibits protein kinase C phosphorylation of the platelet myosin heavy chain at Ser-1917. We hypothesize that Mts1 protein regulates cytoskeletal dynamics of the metastatic cells through modulation of the myosin phosphorylation by protein kinase C in calcium-dependent fashion.  相似文献   

17.
18.
Cis-unsaturated fatty acids activate soluble protein kinase C (PKC) in vitro and in intact platelets. The following studies were conducted to determine the effects of oleate on individual isoenzymes of PKC in human platelets. Human platelets were found to contain predominantly PKC alpha, beta I, beta II, and delta with minor immunoreactivity for PKC epsilon, zeta, and eta. In intact platelets, sodium oleate caused a time-dependent redistribution of PKC alpha, beta II, and delta from cytosol to membrane fractions with little effects on PKC beta I. On the other hand, PMA and thrombin induced translocation of all four isoenzymes of PKC. In vitro, oleate partially activated (50% of Vmax) purified calcium-dependent PKC (alpha, beta I, and beta II) with an EC50 of 50 microM whereas it fully activated (100% of Vmax) purified calcium-independent PKC (predominantly delta) with an EC50 of 5 microM. The selective effects of oleate on PKC isoenzymes were investigated in platelet cytosol which contains endogenous PKC and its physiologic substrates. Under these conditions, oleate potently activated calcium-independent PKC causing the phosphorylation of the 40-kDa substrate. Activation of calcium-dependent isoforms occurred only at higher concentrations of oleate. Thus, oleate activates multiple isoenzymes of PKC with predominant effects on calcium-independent PKC.  相似文献   

19.
Protein kinase CK2 formerly called casein kinase II is a protein kinase able to phosphorylate more than 100 proteic substrates. We have purified protein kinase CK2 from the yeast Y. lipolytica to phosphorylate milk and plant reserve proteins to a significant extent. In the case of plant reserve proteins, which are polymeric substrates, not all subunits are substrate for protein kinase CK2, even if non phosphorylated subunits contain significant potent phosphorylations sites. Best substrates were soy beta-conglycinin (0.72 P/mol) and dephosphorylated caseins (0.5 P/mol). We have studied some functional properties of phosphorylated caseins. Solubility was improved for all pH values but pI. Sensitivity to calcium has also been assessed, and it is slightly improved upon phosphorylation. We have cloned the catalytic subunit of protein kinase CK2 from yeast Y. lipolytica. The recombinant catalytic subunit expressed in E. coli was active and displayed kinetic properties similar to those of the purified enzyme. The recombinant catalytic subunit was able to phosphorylate plant reserve proteins and milk proteins to a significant extent. Best substrates were soy beta-conglycinin (1.0 P/mol), and glycinin (0.59 P/mol).  相似文献   

20.
Tyrosine kinases and tyrosine phosphatases are abundant in central nervous system tissue, yet the role of these enzymes in the modulation of neuronal excitability is unknown. Patch-clamp studies of an Aplysia voltage-gated cation channel now demonstrate that a tyrosine phosphatase endogenous to excised patches determines both the gating mode of the channel and the response of the channel to protein kinase A. Moreover, a switch in gating modes similar to that triggered by the phosphatase occurs at the onset of a prolonged change in the excitability of Aplysia bag cell neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号