首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of inhibition of a polyol pathway on the glucose-induced increase in transforming growth factor-beta (TGF-beta) production and activity of protein kinase C (PKC) in cultured human mesangial cells (MCs). The exposure of MCs to 33 mmol/l glucose resulted in an increase in TGFbeta production, measured by ELISA, compared with 5 mmol/l glucose. The glucose-induced increase in TGF-beta was prevented by concomitant incubation with epalrestat, an aldose reductase inhibitor (ARI), in a dose-dependent manner at a concentration of more than 10(-6) mol/l. Moreover, the glucose-induced enhancement of PKC activity in the membrane fraction of MCs was also abolished by epalrestat. The addition of epalrestat to MCs cultured with 5 mmol/l glucose showed no demonstrable effects on TGF-beta production and PKC activity. These results provide direct evidence for linkages between derangements in polyol pathway and glucose-induced overproduction of TGF-beta and enhancement of PKC activity in MCs. Accordingly, the effect of an ARI on these metabolic abnormalities in MCs may justify its clinical application for treatment of diabetic nephropathy.  相似文献   

2.
3.
BACKGROUND: Transforming growth factor (TGF)-beta is recognized as the final common mediator of the principal lesions of diabetic nephropathy such as renal hypertrophy and mesangial expansion. To gain better understanding of the temporal relationships between high glucose (HG) and mesangial cell (MC) TGF-beta 1 synthesis and between TGF-beta 1 and extracellular matrix (ECM) synthesis, the present study examined early and sequential effects of HG on TGF-beta 1 and fibronectin (FN) mRNA expression and protein synthesis. METHODS: Confluent primary rat MC was stimulated with 5.6 (control) or 30 (high) mM glucose after synchronizing the growth by incubation with serum-free media for 48 hours. RESULTS: Mesangial cell TGF-beta 1 mRNA expression increased significantly in six hours and continued to increase until 48 hours in response to HG. The level of TGF-beta 1 mRNA was 1.5-fold higher than that of control glucose at six hours and 1.8-fold at 48 hours. TGF-beta activity in heat-activated conditioned media under HG increased 1.5- and 1.6-fold at 24 and 48 hours, respectively, compared to control glucose. FN mRNA increased significantly at 24 and 48 hours and 1.4-fold that of control glucose at both time points. FN protein also increased 1.5-fold that of control glucose at 48 hours. Anti-TGF-beta antibody completely abolished HG-induced FN synthesis. CONCLUSIONS: The present finding demonstrate that HG stimulates TGF-beta 1 very early and prior to FN production and that HG-induced FN production is mediated by TGF-beta. This finding is consistent with the view that TGF-beta mediates increased ECM accumulation by MC under high glucose conditions.  相似文献   

4.
Renal injury in diabetes mellitus is a major cause of morbidity and mortality. Several manifestations of diabetic nephropathy may be a consequence of altered production and/or response to cytokines or growth factors. Transforming growth factor-beta (TGF-beta) is one such factor because it promotes renal cell hypertrophy and regulates the production of extracellular matrix molecules. In addition, high ambient glucose increases TGF-beta1 mRNA and protein level in cultured proximal tubular cells and glomerular epithelial and mesangial cells. Neutralizing anti-TGF-beta antibodies or antisense TGF-beta1 oligodeoxynucleotides prevents the hypertrophic effects of high glucose and the stimulation of matrix synthesis in renal cells. Several reports have described overexpression of TGF-beta in the glomeruli and tubulointerstitium of experimental and human diabetes mellitus. We recently provided evidence that the kidney in diabetic patients displays net renal production of immunoreactive TGF-beta1, whereas there is net renal extraction in nondiabetic subjects. We also demonstrated that short-term treatment of streptozotocin-diabetic mice with neutralizing monoclonal antibody directed against TGF-beta significantly reduces kidney weight and glomerular hypertrophy, and attenuates the increase in extracellular matrix mRNA levels. The factors that mediate increased renal TGF-beta activity involve hyperglycemia per se and the intermediary action of other potent mediators such as angiotensin II, thromboxane, endothelins, and platelet-derived growth factor.  相似文献   

5.
Glomerular mesangial cells cultured in high glucose conditions display impaired contractile responsiveness. It was postulated that glucose metabolism through the polyol pathway leads to altered mesangial cell contractility involving protein kinase C. Rat mesangial cells were growth-arrested for 24 h with 0.5% fetal bovine serum in either normal (5.6 mmol/l) or high (30 mmol/l) glucose concentrations or high glucose plus the aldose reductase inhibitor, ARI-509 (100 micromol/l). The reduction of cell planar surface area (contraction) in response to endothelin-1 (0.1 micromol/l), or to phorbol 12-myristate 13-acetate (50 pmol/l), was studied by videomicroscopy. In response to endothelin-1, mesangial cells in normal glucose contracted to 52+/-3% of initial planar area. In high glucose, the significantly (p < 0.05) smaller cell size and no contractile responsiveness to endothelin-1 were normalized with ARI-509. Membrane-associated diacylglycerol, measured by a kinase specific 32P-phosphorylation assay, in high glucose was unchanged after 3 h, but significantly increased (p < 0.05) after 24 h which was normalized with ARI-509. Protein kinase C activity, measured by in situ 32P-phosphorylation of the epidermal growth factor receptor substrate was: increased by 32% at 3 h of high glucose, unchanged by ARI-509; and decreased significantly (p < 0.05) at 24 h compared to cells in normal glucose, normalized by ARI-509. Total cellular protein kinase C-alpha, -delta and -epsilon, analysed by immunoblotting, were unchanged in high glucose at 24 h. Only protein kinase C-epsilon content was reduced by ARI-509 in both normal and high glucose. Therefore, high glucose-induced loss of mesangial cell contractility, diacylglycerol accumulation and altered protein kinase C activity are mediated through activation of the polyol-pathway, although no specific relationship between elevated diacylglycerol and protein kinase C activity was observed. In high glucose, altered protein kinase C function, or another mechanism related to the polyol pathway, contribute to loss of mesangial cell contractile responsiveness.  相似文献   

6.
BACKGROUND: Human immunodeficiency virus-associated nephropathy (HIVAN) is a renal disease of unknown pathogenesis. Recent evidence suggests that the fibrogenic cytokine transforming growth factor-beta (TGF-beta) might be involved. We hypothesized that overproduction of TGF-beta in the kidney might be involved in the pathogenesis of HIVAN. METHODS: The mRNA and protein expression of TGF-beta isoforms, TGF-beta 1, TGF-beta 2, and TGF beta 3, deposition of matrix proteins induced by TGF-beta, and levels of HIV Tat protein were studied in HIVAN. Controls included normal and diseased kidneys from HIV-positive and -negative patients. The ability of Tat to induce production of TGF-beta and matrix proteins was also studied in human mesangial cells. RESULTS: Normal kidneys, thin basement membrane nephropathy, and minimal change disease were negative for the three TGF-beta isoforms and Tat. In HIVAN, levels of TGF-beta isoforms and Tat were significantly increased, along with the expression of TGF-beta mRNA and deposition of matrix proteins stimulated by TGF-beta. Increased levels of TGF-beta isoforms, but not Tat, were also found in other glomerular diseases characterized by matrix accumulation. HIV infection, in the absence of HIVAN, was not associated with an increase in TGF-beta or Tat expression. Tat stimulated the expression and production of TGF-beta 1 and matrix proteins by human mesangial cells. CONCLUSIONS: Our findings suggest that overproduction of TGF-beta is involved in the pathogenesis of HIVAN.  相似文献   

7.
Vascular smooth muscle cell (VSMC) dysfunction plays a role in diabetic macrovasculopathy and this may include abnormalities in growth characteristics and the extracellular matrix. As the actual mechanisms by which glucose induces VSMC dysfunction remain unclear, the aim of this study was to assess the potential role of glucose-induced oxidative stress. Porcine aortic VSMCs were cultured for 10 days in either 5 mmol/l normal glucose or 25 mmol/l D-glucose (high glucose). There was evidence of oxidative stress as indicated by a 50% increase in intracellular malondialdehyde (p < 0.05), increased mRNA expression of CuZn superoxide dismutase and Mn superoxide dismutase (by 51% and 37% respectively, p < 0.01) and a 50% decrease in glutathione in 25 mmol/l D-glucose (p < 0.001). Growth was increased by 25.0% (p < 0.01). mRNA expression of extracellular matrix proteins (collagens I, III, IV and fibronectin) was not altered by high glucose in these experimental conditions. Repletion of glutathione with N-acetyl L-cysteine (1 mmol/l) in VSMC grown in high glucose was associated with reduction in malondialdehyde and restored growth to that of normal glucose. The water soluble analogue of vitamin E, Trolox (200 mumol/l), reduced malondialdehyde concentrations, but had no effect on glutathione depletion or the increased growth rate seen with high glucose. The addition of buthionine sulphoximine (10 mumol/l) to VSMC cultured in normal glucose reduced glutathione, increased malondialdehyde and increased growth to a similar extent as that found in high glucose alone. These results suggest that thiol status, rather than lipid peroxides, is a key factor in modulating VSMC growth and that mRNA expression of extracellular matrix proteins is not increased in VSMC under conditions of glucose-induced oxidative stress.  相似文献   

8.
BACKGROUND: Glomerulonephritis is characterized by the accumulation of extracellular matrix protein within the glomerulus. This process, when allowed to proceed unimpeded, leads to glomerulosclerosis and eventually to cessation of glomerular filtration. There is evidence that protein kinase C (PKC) activation plays an important role in mediating at least some of the effects of TGF-beta in vascular smooth-muscle cells. The current study was undertaken to determine whether PKC activity is required for both TGF-beta and angiotensin II (Ang II) to induce mesangial cell matrix protein secretion. METHODS: PKC was inhibited by two separate methods, and [3H]thymidine incorporation was assessed in both the presence and the absence of PKC inhibition. Conditioned medium from cells stimulated with TGF-beta or Ang II was collected and analysed for secreted matrix proteins and sulphated proteins by SDS-polyacrylamide gel electrophoresis and western blotting. RESULTS: Twenty-four-hour incubation of rat mesangial cells with phorbol-12-myristate-13-acetate (PMA) reduced total PKC activity to basal levels. Both TGF-beta and Ang II were mitogenic in mesangial cells, and chronic PMA pre-incubation inhibited this DNA synthesis. TGF-beta-and Ang-II-induced sulphated protein secretion into conditioned medium was markedly attenuated in PKC-downregulated cells. Secretion of the specific matrix proteins laminin and fibronectin by mesangial cells stimulated with either TGF-beta or Ang II was also diminished in PKC-downregulated cells and in cells pre-incubated with the specific PKC inhibitor, chelerythrine. There was no evidence of generalized cell toxicity or decreased non-specific protein synthesis caused by these PKC inhibitors. CONCLUSIONS: PKC is a key intermediary in the process by which TGF-beta and Ang II cause DNA synthesis and mesangial cell matrix protein production. Thus, PKC inhibitors deserve further study as potential therapeutic agents for a variety of glomerular diseases.  相似文献   

9.
Hyperglycemia directly contributes to the development of diabetic nephropathy. A high-serum glucose concentration alters intraglomerular hemodynamics and promotes deposition of extracellular matrix in the kidney. Nitric oxide (NO) is a short-lived messenger molecule that participates in the regulation of renal blood flow, GFR, and mesangial matrix accumulation. Therefore, in this study it was tested whether high glucose directly modulates NO synthesis by rat mesangial cells in vitro by measuring the accumulation of nitrite, the stable metabolite of NO, in the incubation media. Raising the external glucose concentration to 33.3 mM for 24 to 72 h reduced nitrite levels in cell supernatants in a time-dependent manner to a nadir of 14 +/- 3% of the amount in normal glucose media (5.6 mM) (P < 0.01). The decline in NO synthesis in high glucose media was paralleled by decreased cyclic guanosine monophosphate generation; however, there was no alteration in rat mesangial cell expression of inducible NO synthase protein. The suppressive effect of high glucose on NO production by mesangial cells was not modified by inhibition of protein kinase C (H-7), the addition of antioxidants (vitamin E or superoxide dismutase), or a pan-specific anti-transforming growth factor-beta antibody. An elevated ambient glucose caused a time-dependent reduction in mesangial cell L-arginine content. Addition of L-arginine (10 to 20 mM) to external media partially reversed the inhibitory effect of high glucose on mesangial cell NO production in a dose-dependent manner. The highest dose of L-arginine (20 mM) increased mesangial cell L-arginine content to comparable levels in normal and high glucose media. These results indicate that high glucose causes depletion of L-arginine in mesangial cells and compromises NO synthesis. Limitation in the metabolic precursor and other, as yet unidentified, factors act to reduce NO production by mesangial cells in the presence of an elevated ambient glucose level, a change that may play a role in the development of diabetic glomerulosclerosis.  相似文献   

10.
Leptin, the protein encoded by the obese (ob) gene, is synthesized and released in response to increased energy storage in adipose tissue. However, it is still not known how incoming energy is sensed and transduced into increased expression of the ob gene. The hexosamine biosynthetic pathway is a cellular 'sensor' of energy availability and mediates the effects of glucose on the expression of several gene products. Here we provide evidence for rapid activation of ob gene expression in skeletal muscle by glucosamine. Increased tissue concentrations of the end product of the hexosamine biosynthetic pathway, UDP-N-acetylglucosamine (UDP-GlcNAc), result in rapid and marked increases in leptin messenger RNA and protein levels (although these levels were much lower than those in fat). Plasma leptin levels and leptin mRNA and protein levels in adipose tissue also increase. Most important, stimulation of leptin synthesis is reproduced by either hyperglycaemia or hyperlipidaemia, which also increase tissue levels of UDP-N-acetylglucosamine in conscious rodents. Finally, incubation of 3T3-L1 pre-adipocytes and L6 myocytes with glucosamine rapidly induces ob gene expression. Our findings are the first evidence of inducible leptin expression in skeletal muscle and unveil an important biochemical link between increased availability of nutrients and leptin expression.  相似文献   

11.
12.
Diabetic patients with hyperglycemia (high blood glucose) have frequent and persistent bacterial infections linked to significantly diminished bactericidal activity and macrophage function. Interleukin-1 (IL-1), released primarily from activated macrophages, is a key mediator of effective host defense against microorganisms. We observe that hyperglycemic levels of D-glucose (8-20 mM) inhibit the release of IL-1 by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. An inhibitor of glucose transport and metabolism, 2-deoxyglucose, prevents this inhibition of IL-1 release. High levels (8-20 mM) of fructose and mannose (but not galactose or L-glucose) also inhibit the release of IL-1 activity, suggesting that metabolism is required for IL-1 inhibition. Immunoprecipitation and activity measurements demonstrate that high glucose levels block the release of IL-1 but do not inhibit IL-1 production. High glucose levels (20 mM) increase protein kinase C (PKC) activity, and inhibitors of PKC block the inhibitory effects of glucose. Phorbol 12-myristate 13-acetate, an agonist of PKC, mimics glucose-induced inhibition of IL-1 release. These results demonstrate that high glucose levels inhibit IL-1 release (but not production) by RAW 264. 7 murine macrophages, and this inhibition is mediated by PKC activation. These studies suggest that persistent infections in hyperglycemic patients may be due to an inhibition of IL-1 release from macrophages.  相似文献   

13.
We recently demonstrated that transforming growth factor-beta (TGF-beta) stimulates phosphorylation of the type I inositol 1,4, 5-trisphosphate receptor (Sharma, K., Wang, L., Zhu, Y., Bokkala, S., and Joseph, S. (1997) J. Biol. Chem. 272, 14617-14623), possibly via protein kinase A (PKA) activation in murine mesangial cells. In the present study, we evaluated whether TGF-beta stimulates PKA activation. Utilizing a specific PKA kinase assay, we found that TGF-beta increases PKA activity by 3-fold within 15 min of TGF-beta1 treatment, and the enhanced kinase activity was completely reversed by the inhibitory peptide for PKA (PKI; 1 microM). In mesangial cells transfected with a PKI expression vector, enhanced PKA activity could not be demonstrated with TGF-beta1 treatment. TGF-beta1 was also found to stimulate translocation of the alpha-catalytic subunit of PKA to the nucleus by Western analysis of nuclear protein as well as by confocal microscopy. TGF-beta1-mediated phosphorylation of cAMP response element-binding protein was completely reversed by H-89 (3 microM), a specific inhibitor of PKA. Stimulation of fibronectin mRNA by TGF-beta1 was also attenuated in cells overexpressing PKI. We thus conclude that TGF-beta stimulates the PKA signaling pathway in mesangial cells and that PKA activation contributes to TGF-beta stimulation of cAMP response element-binding protein phosphorylation and fibronectin expression.  相似文献   

14.
Monocyte chemoattractant protein-1 (MCP-1) is expressed in a diverse range of cells in response to various pathologic stimuli, whereas little is known about endogenous inhibitors of MCP-1 expression. I sought negative regulators of MCP-1 in culture medium conditioned by several cell lines and found that glomerular mesangial cells exclusively secrete a factor that inhibits expression of MCP-1 by activated macrophages. Treatment of J774.2 macrophages with conditioned medium from mesangial cells blunted the induction of MCP-1 by LPS. Even after the induction, subsequent treatment of macrophages with the conditioned medium down-regulated the MCP-1 expression. Medium conditioned by normal rat glomeruli contained a similar inhibitory activity that was enhanced in regenerating glomeruli, where mesangial cells are activated. The activity of the conditioned medium was not diminished, but enhanced by heat treatment, which was consistent with the unique property of TGF-beta family of molecules. Indeed, the mesangial cell-derived medium contained active TGF-beta 1. An anti-TGF-beta 1 neutralizing Ab abolished the inhibitory effect exerted by the mesangial cell medium, and externally added TGF-beta 1 suppressed the MCP-1 expression by macrophages at both mRNA and protein levels. The inhibitory effect of TGF-beta 1 on MCP-1 was observed in other macrophage cell lines, RAW264.7 and NR8383, and peritoneal macrophages, but not in fibroblastic cell line NRK49F. Treatment of J774.2 macrophages with TGF-beta 1 inhibited LPS induction of c-jun that was found to be crucial for the MCP-1 expression. These data demonstrate that TGF-beta 1 functions as an inhibitor of MCP-1 expression in macrophages possibly via down-regulation of c-Jun/activator protein-1.  相似文献   

15.
The important role of hyperglycemia in the genesis of diabetic renal disease has been strengthened by tissue culture studies, experimental animal models, and clinical trials. A mechanistic understanding of the cellular and biochemical processes that link hyperglycemia with the development of diabetic nephropathy is indispensable for directing the most optimal therapeutic interventions. Likely mediators of the effects of high ambient glucose include activation of the polyol pathway, increased protein kinase C activity, nonenzymatic glycation of circulating or matrix proteins, and/or aberrant synthesis or actions of cytokines and vasomodulatory agents. The latter include angiotensin II, thromboxane, platelet-derived growth factor, endothelins, insulin-like growth factor-1, and transforming growth factor-beta. The studies we review here argue strongly in support of the hypothesis that elevated production and/or activity of transforming growth factor-beta in the kidney is a final common mediator of diabetic renal hypertrophy and mesangial matrix expansion.  相似文献   

16.
BACKGROUND: The plasma concentration of 5-hydroxytryptamine (5-HT) in diabetic patients is higher than that in normal subjects. Since recent reports have demonstrated the presence of 5-HT2A receptor in glomerular mesangial cells, it is possible that 5-HT may be involved in the development of diabetic nephropathy through the 5-HT2A receptor in mesangial cells. Because expansion of the glomerular mesangial lesion is a characteristic feature of diabetic nephropathy, we examined the effect of 5-HT on the production of type IV collagen by human mesangial cells. METHODS: Human mesangial cells were incubated with 5-HT with or without 5-HT receptor antagonists, protein kinase C (PKC) inhibitor or transforming growth factor-beta (TGF-beta) antibody. Type IV collagen mRNA and protein concentration in medium were measured by Northern blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. TGF-beta mRNA and bioactivity in the medium were measured by Northern blot analysis and bioassay using mink lung epithelial cells, respectively. RESULTS: 5-HT stimulated the production of type IV collagen by human mesangial cells, which was inhibited by ketanserin and sarpogrelate hydrochloride, 5-HT2A receptor antagonists, but not by ondansetron, a 5-HT3 receptor antagonist. 5-HT increased the bioactivities of both active and total TGF-beta. However, the 5-HT-enhanced production of type IV collagen was completely inhibited by an anti-TGF-beta antibody. Furthermore, a PKC inhibitor, calphostin C, inhibited the 5-HT-induced increase in type IV collagen secretion, and the activity of membrane PKC was increased by 5-HT. Phorbol ester activated type IV collagen production as well as active and total TGF-beta. Calphostin C completely inhibited the 5-HT-enhanced activity of active TGF-beta, but did not inhibit exogenous TGF-beta-induced increase in type IV collagen secretion. CONCLUSIONS: Our results suggest that 5-HT-enhanced production of type IV collagen by human mesangial cells is mediated by activation of PKC and subsequent increase in active TGF-beta activity.  相似文献   

17.
Cultured mesangial cells (MC) exposed to cyclic mechanical strain or high glucose levels increase their secretion of transforming growth factor-beta1 (TGF-beta1) and collagen, suggesting possible mechanisms for the development of diabetic renal sclerosis resulting from intraglomerular hypertension and/or hyperglycemia. This study examines whether glucose interacts with mechanical strain to influence collagen metabolism and whether this change is mediated by TGF-beta. Accordingly, rat MC were grown on flexible-bottom plates in 8 or 35 mM glucose media, subjected to 2 to 5 d of cyclic stretching, and assayed for TGF-beta1 mRNA, TGF-beta1 secretion, and the incorporation of 14C-proline into free or protein-associated hydroxyproline to assess the dynamics of collagen metabolism. Stretching or high glucose exposure increased TGF-beta1 secretion twofold and TGF-beta1 mRNA levels by 30 and 45%, respectively. However, the combination of these stimuli increased secretion greater than fivefold without further elevating mRNA. In 8 mM glucose medium, stretching significantly increased MC collagen synthesis and breakdown, but did not alter accumulation, whereas those stretched in 35 mM glucose markedly increased collagen accumulation. TGF-beta neutralization significantly reduced baseline collagen synthesis, breakdown, and accumulation in low glucose, but had no significant effect on the changes induced by stretch. In contrast, the same treatment of MC in high glucose medium greatly reduced stretch-induced synthesis and breakdown of collagen and totally abolished the increase in collagen accumulation. These results indicate that TGF-beta plays a positive regulatory role in MC collagen synthesis, breakdown, and accumulation. However, in low glucose there is no stretch-induced collagen accumulation, and the effect of TGF-beta is limited to basal collagen turnover. In high glucose media, TGF-beta is a critical mediator of stretch-induced collagen synthesis and catabolism, and, most importantly, its net accumulation. These data have important implications for the pathogenesis and treatment of diabetic glomerulosclerosis.  相似文献   

18.
Altered functions of mesangial cells (MCs) induced by high glucose levels are thought to play an important role in the pathogenesis of diabetic nephropathy. We investigate whether D-alpha-tocopherol (Toc), an antioxidant, can prevent malfunction of cultured human MCs induced by high-glucose media. Incubating MCs with 33 mmol/L glucose caused increased lipid peroxide (LPO) levels, disturbed cell replication, enhanced cytotoxicity, enhanced activity of the diacylglycerol (DAG)-protein kinase C (PKC) pathway, and overproduction of fibronectin and eicosanoids (6-keto prostaglandin F1 alpha [PGF1 alpha] and thromboxane B2 [TXB2]). The amount of LPO in MCs grown in 5 mmol/L glucose was reduced by the addition of Toc in a dose-dependent manner. Since the maximum effect of Toc on decreasing LPO was achieved at a concentration of 100 mumol/L, this dose was selected for the following experiments. Addition of Toc prevented increased LPO levels and [51Cr]-release from MCs induced by high-glucose media without affecting cell number. Toc decreased the total DAG level and PKC activity in membrane fractions in MCs cultured at both 5 and 33 mmol/L glucose. Furthermore, glucose-induced overproduction of fibronectin and eicosanoids from MCs was completely abolished by Toc. These results strongly suggest that Toc ameliorates glucose-induced malfunctions of MCs in vitro.  相似文献   

19.
Oxidative stress has been proposed as the basis for the pathogenesis of diabetic nephropathy. Rebamipide is a novel antiulcer drug that has, in addition, oxygen radical scavenging activity. Our study examines whether rebamipide could ameliorate the pathophysiology associated with experimental diabetes in vivo, such as microalbuminuria, and to reverse the increased production of transforming growth factor-beta1 and fibronectin in SV-40 transformed murine mesangial cells in culture that were stimulated with high glucose. Chronic administration of rebamipide (100 mg/kg/day, p.o., for 3 wk) to rats, in which diabetes was previously induced by the i.v. injection of streptozotocin 50 mg/kg, reversed hyperglycemia, which would contribute to prevent the increases in urinary excretion rates of albumin and lipid peroxides observed in this experimental model. Rebamipide, at this dose level, did not cause any discernible effect on age-matched control rats. Rebamipide 2 mM was as effective as 20 mM of dimethylthiourea, a known hydroxyl radical scavenger, in inhibiting the increase in lipid peroxides, transforming growth factor-beta1, fibronectin mRNAs and proteins induced by incubation of cultured mesangial cells with high glucose. Our data suggest that rebamipide attenuates high glucose-induced nephropathy, which is attributable, in part, to its antioxidative property and, in part, to its effect on reversing hyperglycemia.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) stimulates the accumulation of extracellular matrix in renal and hepatic disease. Kidney glomerular mesangial cells (GMC) and liver fat-storing cells (FSC) produce latent of inactive TGF-beta. In this study, we characterized the latent TGF-beta complexes secreted by these cells. Human FSC produce a single latent TGF-beta complex, predominantly of the TGF-beta 1 isoform, whereas GMC secrete multiple complexes of latent TGF-beta, containing beta 1 and beta 2 isoforms. At least four forms were identified in GMC using ion exchange chromatography, including a peak not previously described in other cell types which eluted at 0.12 M NaCl, and predominantly of the beta 2 isoform. Both cell types secrete the latent TGF-beta 1 binding protein of 190 kDa, as part of a high molecular weight TGF-beta complex. Epidermal growth factor stimulates the secretion of latent TGF-beta and latent TGF-beta binding protein in both cell types. Secretion of latent TGF-beta in both cell types was found to be associated with secretion of decorin. This study shows that vascular pericytes from the kidney and the liver have distinctly different profiles of latent TGF-beta complexes, with GMC secreting a unique form of latent TGF-beta 2. The regulatory effect of epidermal growth factor and platelet-derived growth factor has potential implication for the pathophysiology of liver regeneration and chronic liver and kidney diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号