首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pitting susceptibility of stainless steels with (%) 17.39 Cr, 5.3 Ni, 0.3–13.9 Mn in chloride solutions have been studied by a potentiodynamic cyclic polarization technique in solutions 0.1 N H2SO4 + 0.9 N Na2So4 + various amounts of NaCl. At low NaCl concentrations no pronounced influence of the chloride can be found and even at medium concentrations the passivation behaviour is generally maintained; in this region, however, there is an increase of dissolution and passivation current densities. High chloride concentrations, however, result in pitting which may be completely suppressed by a cyclic (anodic/cathodic) polarization technique. As to pitting resistance an alloy containing (%) 17.3 Cr, 5.3 Ni, 5.6 Mn is comparable to the steel CrNi 18 9.  相似文献   

2.
This paper reports an investigation into reducing the Cr concentration in commercial-grade stainless steels while maintaining oxidation protection at elevated temperatures. Aluminum and Si were added as partial substitute alloy elements to enhance the reduced operation protection resulting from Cr concentration reduced by approximately 50 pct of that found in stainless steels. The goal of this study was to determine the oxidation mechanism of such an Fe, Al-Si alloy: Fe-8Cr-14Ni-1Al-3.5Si-1Mn. During the initial oxidation period the protection resulted from a thin film of Al2O3 over an Fe and Cr spinel. Long-term oxidation protection resulted from the gradual formation of a Cr sesquioxide (Cr2O2) inner oxide layer. Eventually an outer oxide layer formed that was a mixed composition spinel of Cr and Mn (MnO · Cr2O3). The Al2O3, which was part of the original protective layer flaked off early in the oxide testing, and the aluminum oxide that formed later appeared as an internal oxide precipitate.  相似文献   

3.
Corrosion problems in chloride containing media: possible solution by some stainless special steels The increasing water pollution forces the chemical industry to use water with increasing chloride content for cooling and other purposes. This trend brings about increasing corrosion danger, in particular pitting, stress corrosion cracking and corrosion fatigue as well as crevice corrosion. The present paper deals with some steels characterized by resistance to these specific corrosion phenomena. A steel containing (%) 21 Cr., 7.5 Ni, 2.5 Mo, 1.5 Cu, to 2 Mn, to 1 Si and 0.06 C is particularly resistant to stress corrosion cracking. It contains 30 to 50% ferrite in an austenitic matrix. Even in Mg chloride solutions it may be kept under a load of 7 kg/mm2 without stress corrosion occurring (with a steel of the 18 10 CrNiMo type the admissible load is only 2 kg/mm2). A steel containing (%) 25 Ni, 21 Cr, 4.5 Mo, 1.5 Cu, to 1 Si, to 2 Mn, and 0.02 C has a broad passivity range and is resistant to general corrosion in acid reducing media and phosphoric acid of all concentrations. A ferritic steel containing (%) 26 Cr. 1 Mo and minor additions of C, Mn, Si, Cu, Ni and nitrogen is resistant to stress corrosion cracking in neutral chloride solutions and general corrosion in oxidizing and neutral media, even against hydrogen sulfid and organic acids; it is beyond that lergely resistant to pitting in chloride solutions.  相似文献   

4.
A new family of alumina-forming austenitic (AFA) stainless steels is under development for uses in aggressive oxidizing conditions. This paper investigates the effect of manganese additions on the oxidation kinetics and alumina scale formation in two series of AFA steels, i.e., Fe–20Ni–14Cr–2.5Al and Fe–18Cr–25Ni–3Al base. At 800?°C in dry air, the oxidation resistance was moderately degraded with additions of larger than 1 wt% Mn in the AFA steels based on Fe–14Cr–20Ni–2.5Al. At 900?°C in air with 10?% water vapor, however, additions of Mn in these AFA steels based on Fe–18Cr–25Ni–3Al would significantly destabilize the alumina scale formation and degrade the oxidation resistance. Our analysis revealed that additions of Mn stimulated formation of the coarse spinel CrMn1.5O4 and Cr2O3 oxide and destroyed the continuity of the protective alumina scales, thus worsening the oxidation performance. In addition, it was found that there exists an upper limit for the Mn additions which is decreased with the increase of the service temperatures and presence of aggressive oxidizing agents.  相似文献   

5.
The corrosion properties of austenitic Fe-Mn, Fe-Mn-Al, Fe-Mn-Cr and Fe-Mn-Al-Cr alloys with compositions of 23-30 wt% Mn, 2.8-8.2 wt% Al and 4.9-6.9 wt% Cr in various aqueous solutions of pH −0.8 to 15.3 and the passivating mechanism induced by the presence of Al, Cr, or Al and Cr have been studied using electrochemical measurements and Auger electron spectroscopic/X-ray photoelectron spectroscopic analysis. Binary Fe-Mn alloys can be passivated only in 10-50% NaOH solutions, and alloying of binary Fe-Mn alloy with Al or Cr or combination of Al and Cr seems not so obviously beneficial to corrosion resistance in HNO3 or Na2SO4 solutions. All of the experimental Fe-Mn based alloys and steels for comparison cannot passivate in either 10% HCl or 3.5% NaCl solution. The Fe-Mn based alloys containing Al or Cr or Al and Cr can passivate in 10-50% HNO3 or 1 mol l−1 Na2SO4 solutions and rainwater. In general, Fe-Mn based alloys can passivate in oxidizing acid, neutral and basic solution, but cannot passivate in reducing acid or solution containing active Cl ions. In the passive film formed on the surface of Fe-Mn base alloys in various aqueous solutions, bound water and hydroxides are present at the surface of the film, while mixed oxides of Al, Cr, Mn and Fe are located in the inner part. The resistance to corrosion is imparted by a barrier film of bound water, hydroxides and oxides of Al, Cr or Fe, while the Mn oxides in passive film reduce the corrosion resistance.  相似文献   

6.
A multi-element and multi-phase internal oxidation model that couples thermodynamics with kinetics is developed to predict the internal oxidation behaviour of Fe–Mn–Cr steels as a function of annealing time and oxygen partial pressure. To validate the simulation results, selected Fe–Mn–Cr steels were annealed at 950 °C for 1–16 h in a gas mixture of Ar with 5 vol% H2 and dew points of ? 30, ? 10 and 10 °C. The measured kinetics of internal oxidation as well as the concentration depth profiles of internal oxides in the annealed Fe–Mn–Cr steels are in agreement with the predictions. Internal MnO and MnCr2O4 are formed during annealing, and both two oxides have a relatively low solubility product. Local thermodynamic equilibrium is established in the internal oxidation zone of Fe–Mn–Cr steels during annealing and the internal oxidation kinetics are solely controlled by diffusion of oxygen. The internal oxidation of Fe–Mn–Cr steels follows the parabolic rate law. The parabolic rate constant increases with annealing dew point, but decreases with the concentration of the alloying elements.  相似文献   

7.
The effect of chloride ions' presence (0·005–1·0M NaCl) in phosphoric acid solutions (5, 40 and 75%) on the corrosion behaviour of three austenitic stainless steels (an experimental steel Fe–18Cr–12Mn–0·6N and two trade grades, Fe–18Cr–9Ni and Fe–14Cr–15Mn–0·2N) has been studied by potentiodynamic polarisation measurements. The surface examinations of the samples tested involved X-ray photoelectron spectroscopy as well as optical and scanning electron microscopy. It was established that chlorides added to phosphoric acid solutions deteriorate the general corrosion resistance, and under anodic polarisation, they provoke pitting corrosion. The composition of the stainless steels significantly influences its corrosion behaviour in the phosphoric acid solutions containing chloride ions. The replacement of nickel with manganese and nitrogen on top of lower chromium content has a strong negative effect on the corrosion resistance.  相似文献   

8.
The oxidation resistance of austenitic stainless steels modified with various aluminum contents was investigated. The weight gain per unit area is in parabolic relation to oxidation time, and the oxidation rate significantly decreases with increased aluminum content. Outer layer oxides of austenitic stainless steel transform from Cr2O3 to a composite oxide layer comprising Cr and Al, and more dense Al-containing oxides formed with increasing the added Al contents. Since the diffusion of element Al is enhanced and the diffusion of element Cr is inhibited, the oxides enriched in Al dramatically contribute to the improved oxidation resistance of austenitic stainless steels at high temperature. The possible oxidation mechanisms are also proposed based on microstructural observations.  相似文献   

9.
This work was aimed at explaining the corrosion mechanism of commercial Cr–Mn steels at 1073, 1173 and 1273 K in the atmospheres containing oxygen and sulfur. Three steels were selected for the investigations, two single-phase austenitic steels (Cr17Mn17 and Cr13Mn19SiCa) and a two-phase austenitic-ferritic steel Cr15Mn19. On all studied steels triplex scales were formed. The inner very thin, fine-grained part of the scale contained manganese, chromium and iron sulfides and oxides, the intermediate layer was built mainly of the MnCr2O4 spinel while MnO was the predominant constituent of the outer scale layer. According to the gravimetric measurements, after an initial incubation period, the oxidation of steel follows a parabolic rate law. Thermodynamic and kinetic aspects of the formation of oxide-sulfide and oxide layers were discussed. Oxidation was accompanied by depletion of the subscale region of the metallic core in manganese, which is the austenite former. Consequently austenite transformed into ferrite.  相似文献   

10.
Oxidation of high-aluminum austenitic stainless steels   总被引:2,自引:0,他引:2  
The cyclical oxidation behavior of an austenitic stainless steel (24% Ni, 10% Cr, 5% Al, and balance Fe) has been evaluated in the temperature range 800–1300°C. The effects of trace elements such as S, Y, Zr, and Ti on the oxidation of the austenitic stainless steel have also been evaluated. The results indicate that Fe-Ni-Cr-Al stainless steels exhibit superior oxidation resistance up to 1300°C due to the formation of a very adherent and thin film of -Al2O3.  相似文献   

11.
Ferritic stainless steels have become promising candidate materials for interconnects in tubular metal-supported solid oxide fuel cell stacks. A number of ferritic alloys containing between 18 and 26 mass% Cr and discrete changes in minor alloying elements and reactive elements were isothermally oxidized at 800 °C in air and their electrical resistance was measured with the objective of obtaining an overview of the properties relevant for applications for cathode side interconnect. The alloys containing Mn showed a (Mn,Cr)3O4 spinel layer on top of a Cr2O3 oxide. The electrical conductivity of the steels forming this kind of oxide layer was higher than the measured for only Cr2O3 former or oxide dispersion strengthened alloys and increased when the alloy contained Ti or Nb. Oxide scale spallation was observed for F18TNb and E-Brite, both containing Si. The influence of different cyclic oxidations was studied for the Crofer22APU steel, showing an irregular oxide growth as well as an increase in conductivity of the oxide scale formed when 12-h cycles were applied.  相似文献   

12.
In order to clarify the mechanism for increased resistance to pitting in acid chloride solutions by addition of Me to CrNi stainless steels, the anodic polarization curves, a.c. electrode impedances, ellipsometric parameters and X-ray photo-electron spectra have been measured on the Mo-containing steels passivated in 1N HCl. The results showed that the presence of an adequate amount of Cr is indispensable for the improvement of pitting resistance by the Mo addition. The passive films of the Mo-containing steels were found to be composed of a complex oxyhydroxide containing Cr3+ Fe2+, Ni2+, Mo6+ and Cl? and showed a rather higher d.c. resistance in HCl solution than in H2SO4 solution. The thickness of the passive film increases with increase in Mo content.  相似文献   

13.
The effect of Cr on the oxidation of Fe–Mn-based steels during isothermal annealing at different dew points was investigated. The Fe–Mn–Cr–(Si) phase diagrams for oxidizing environments were computed to predict the oxide phases. Various Fe–Mn steels with different concentrations of Cr and Si were annealed at 950 °C in a gas mixture of Ar or N2 with 5 vol% H2 and dew points ranging from ? 45 to 10 °C. The identified oxide species after annealing match with those predicted based on the phase diagrams. (Mn,Fe)O is the only oxide phase formed during annealing of Fe–Mn binary steel alloys. Adding Cr leads to the formation of (Mn,Cr,Fe)3O4 spinel. The dissociation oxygen partial pressure of (Mn,Cr,Fe)3O4 in the Fe–Mn–Cr steels is lower than that of (Mn,Fe)O. The Si in the steels results in the formation (Mn,Fe)2SiO4, and increasing the Si concentration suppresses the formation of (Mn,Cr,Fe)3O4 and (Mn,Fe)O during annealing.  相似文献   

14.
This paper describes in detail the oxidation of two cast stainless steels in synthetic diesel and gasoline exhaust gases. One alloy was ferritic (Fe18Cr1.4Nb2.1Mn0.32C) and one austenitic (Fe20Cr9Ni1.9Nb2.7W0.47C). Polished sections were exposed, mostly for 50 h, at temperatures between 650 and 1,050 °C. The oxidation product was characterized by means of SEM/EDX, AES, and XRD. Inter-dendritic non-Cr carbides initiated thick oxides. The ferritic steel formed a rather thin and adherent oxide scale at all temperatures. It consisted of (Mn, Cr) oxide on top of Cr2O3 and, starting at 850 °C, a thin silica film at the metal–oxide interface. Chromium depletion triggered dissolution of carbides providing Cr to the oxide. Water vapor did not accelerate the attack since the outer (Mn, Cr) spinel oxide reduced the Cr evaporation. The austenitic grade was very sensitive to water vapor. Chromium segregation directed pitting to the dendrites up to 950 °C whereas uniform catastrophic oxidation occurred at 1,050 °C.  相似文献   

15.
The influence of niobium content (0.5–2.0 wt.%) on the oxidation behaviour of Fe-15% Cr-15% Ni austenitic stainless steels has been studied by cyclic oxidation tests in air at different temperatures in the range 800–1200°C. The isothermal oxidation rate, the scaling index and the cumulative oxide loss decreased with increasing niobium content. X-ray diffraction and fluorescence analysis of detached oxide scales revealed that the niobium in the alloy matrix facilitated the formation of chromium rich (Fe, Cr)2O3 and niobium containing mixed oxide near the metal/metal oxide boundary, which decreased further oxidation. SEM/EDX investigations revealed that the external oxide changed from being predominantly iron rich iron-chromium oxide to being chromium rich iron-chromium oxide.  相似文献   

16.
Peculiarities in the corrosion behaviour of high chromium and molybdenum containing alloys in hot 92.5% sulfuric acid In laboratory tests at temperatures above 50°C unusual high corrosion rates of passivating stainless steels and nickel alloys containing more than 26% Cr were observed in 92.5% sulphuric acid. In order to investigate the cause of this phenomenon further corrosion tests and additional chemical analyses were performed. The H2SO4 concentration tested displays a relative maximum of the electrical conductivity, the reason being a stronger dissociation of the sulfuric acid. Electrochemical investigations revealed an enhanced activity of the cathodic reactions which lead to higher corrosion rates. The cathodic reactions are strongly dependend on alloy constitution with special emphasis on the contents of Cr, Ni and Mo. Mo containing stainless steel show potential oscillations (of the open circuit potential) between ?50 and +550 mVH. These alloys corrode under development of SO2 (reduction of H2SO4 molecules) and formation of several sulfur compounds with different oxidation numbers (6+ and 2?). Alloys with chromium contents above 26% develop additionally hydrogen gas due to a lower hydrogen overvoltage of these alloys. With increasing nickel content the overvoltage for the reduction reaction of H2SO4 molecules will be lowered. This fact results in an elevation of the exchange current density for the Alloy NiCr45 and therefore to the highest corrosion rate observed. Alloy B-2 shows the best resistance, i.e. very low corrosion rates. Obviously high levels of molybdenum can compensate the influence of nickel on the overvoltage of the reduction reaction or even hinder the cathodic reaction.  相似文献   

17.
The oxidation behaviours of three different steels used in the construction of petroleum refinery heaters were investigated by thermogravimetric analysis (TGA) technique. C‐5, P‐11 and P‐22 steel samples were tested in two different environments: air and CO2 + 2H2O + 7.52N2, a gas composition which simulates the combustion products of natural gas, at 450 and 500 °C. P‐22 steel had the best oxidation resistance at both temperatures in air. In CO2 + 2H2O + 7.52N2 environment, the oxidations of all the steels were accelerated and C‐5 exhibited better oxidation resistance than P‐22 and P‐11. Analyses of oxidation products by optical microscopy, SEM‐EDX and XRD were carried out to correlate TGA results to oxide composition and morphology. The lower oxidation rate of P‐22 in air was explained with reference to the formation of a protective Cr‐containing oxide layer between the steel and the iron oxide scale. The higher oxidation rates of chromium containing steels in CO2 + 2H2O + 7.52N2 environment were attributed to the depletion of protective Cr‐containing oxide scale, which was deduced from the lower Cr content of this layer than that formed in air oxidation, as a result of probably faster oxidation of Cr even inside the steel. Therefore, the oxidation mechanisms of Fe? Cr alloys with intermediate Cr contents at higher temperatures could also be valid for steels with low chromium contents such as P‐22 (2.25%) even at 450 and 500 °C.  相似文献   

18.
Four experimental oxide dispersion strengthened (ODS)Fe-(13–14 at. %)Cr ferritic alloys were exposed for up to 10,000 hr at 700–1100 °C in air and in air with 10vol.% water vapor. Their performance has been compared to other commercial ODS and stainless steel alloys. At 700–800°C, the reaction rates in air were very low for all of the ODS Fe–Cr alloys compared to stainless steels. At 900°C, a Y2O3 dispersion showed a distinct benefit in improving oxidation resistance compared to an Al2O3 dispersion or no addition in the stainless steels. However, for the Fe-13 %Cr alloy, breakaway oxidation occurred after 7,000 hr at 900°C in air. Exposures in 10 % water vapor at 800 and 900°C and in air at 1000 and 1100°C showed increased attack for this class of alloys. Because of the relatively low Cr reservoirs in these alloys, their maximum operating temperature in air will be below 900°C.  相似文献   

19.
Abstract

Some mild steels when chemically polished in oxalic acid/hydrogen peroxide solutions developed oxide films, containing chromium, which were unusually resistant to removal. The same steels developed similar films during electrochemical passivation in sulphuric acid. Susceptibility to chromium enrichment seems to be not solely influenced by chromium content but is affected by heat-treatment and possibly depends on some chromium remaining in solution in the ferrite. For mild steels, chromium enrichment does not prevent brightening, but for steels deliberately alloyed with chromium it may.

Chromium enrichment of the surface of a stainless steel was also found after electrochemical polishing. The use of anodic oxidation at constant current for the examination of stainless steel surfaces is discussed.  相似文献   

20.
The corrosion behavior of three Fe-Mn-Si-Cr-Ni-(Co) shape memory stainless steels (SMSS) in 0.5 M H2SO4 solution was studied through electrochemical and immersion tests. The test results were compared with that of a type 304 (SS 304) austenitic stainless steel. The three SMSSs exhibited a passive behavior in 0.5 M H2SO4 solution; however, their anodic behavior in the active dissolution region was markedly different. The passive current densities of the SMSSs were similar to that of SS 304, although the critical anodic current required for passivation was higher. The corrosion rate of the SMSSs was much higher than that of SS 304. It was observed that the amount of Cr and Mn plays an important role in the corrosion behavior of SMSSs. The best corrosion behavior in acid media was shown by the SMSS that contained the highest amount of Cr and the lowest amount of Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号