首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.  相似文献   

3.
Hsp90 functions in a multicomponent chaperone system to promote the maturation and maintenance of a diverse, but specific, set of target proteins that play key roles in the regulation of cell growth and development. To identify additional components of the Hsp90 chaperone system and its targets, we searched for multicopy suppressors of various temperature-sensitive mutations in the yeast Hsp90 gene, HSP82. Three suppressors were isolated for one Hsp90 mutant (glutamate --> lysine at amino acid 381). Each exhibited a unique, allele-specific pattern of suppression with other Hsp90 mutants and had unique structural and biological properties. SSF1 is a member of an essential gene family and functions in the response to mating pheromones. CNS1 is an essential gene that encodes a component of the Hsp90 chaperone machinery. The role of HCH1 is unknown; its sequence has no strong homology to any protein of known function. SSF1 and CNS1 were weak suppressors, whereas HCH1 restored wild-type growth rates at all temperatures tested to cells expressing the E381K mutant. Overexpression of CNS1 or HCH1, but not SSF1, enhanced the maturation of a heterologous Hsp90 target protein, p60(v-src). These results suggest that like Cns1p, Hch1p is a general modulator of Hsp90 chaperone functions, whereas Ssf1p likely is either an Hsp90 target protein or functions in the same pathway as an Hsp90 target protein.  相似文献   

4.
5.
6.
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

7.
8.
A previously uncharacterized Saccharomyces cerevisiae open reading frame, YNR038W, was analyzed in the context of the European Functional Analysis Network. YNR038W encodes a putative ATP-dependent RNA helicase of the DEAD-box protein family and was therefore named DBP6 (DEAD-box protein 6). Dbp6p is essential for cell viability. In vivo depletion of Dbp6p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase labeling of pre-rRNA and steady-state analysis of pre-rRNA and mature rRNA by Northern hybridization and primer extension show that Dbp6p depletion leads to decreased production of the 27S and 7S precursors, resulting in a depletion of the mature 25S and 5.8S rRNAs. Furthermore, hemagglutinin epitope-tagged Dbp6p is detected exclusively within the nucleolus. We propose that Dbp6p is required for the proper assembly of preribosomal particles during the biogenesis of 60S ribosomal subunits, probably by acting as an rRNA helicase.  相似文献   

9.
FUS7 was previously identified by a mutation that causes a defect in cell fusion in a screen for bilateral mating defects. Here we show that FUS7 is allelic to RVS161/END6, a gene implicated in a variety of processes including viability after starvation, endocytosis, and actin cytoskeletal organization. Two lines of evidence indicate that RVS161/END6's endocytic function is not required for cell fusion. First, several other endocytic mutants showed no cell fusion defects. Second, we isolated five function-specific alleles of RVS161/FUS7 that were defective for endocytosis, but not mating, and three alleles that were defective for cell fusion but not endocytosis. The organization of the actin cytoskeleton was normal in the cell fusion mutants, indicating that Rvs161p's function in cell fusion is independent of actin organization. The three to fourfold induction of RVS161 by mating pheromone and the localization of Rvs161p-GFP to the cell fusion zone suggested that Rvs161p plays a direct role in cell fusion. The phenotypes of double mutants, the coprecipitation of Rvs161p and Fus2p, and the fact that the stability of Fus2p was strongly dependent on Rvs161p's mating function lead to the conclusion that Rvs161p is required to interact with Fus2p for efficient cell fusion.  相似文献   

10.
11.
12.
Cryptococcal meningitis is a fungal infection, caused by Cryptococcus neoformans, which is prevalent in immunocompromised patient populations. Treatment failures of this disease are emerging in the clinic, usually associated with long-term treatment with existing antifungal agents. The fungal cell wall is an attractive target for drug therapy because the syntheses of cell wall glucan and chitin are processes that are absent in mammalian cells. Echinocandins comprise a class of lipopeptide compounds known to inhibit 1,3-beta-glucan synthesis, and at least two compounds belonging to this class are currently in clinical trials as therapy for life-threatening fungal infections. Studies of Saccharomyces cerevisiae and Candida albicans mutants identify the membrane-spanning subunit of glucan synthase, encoded by the FKS genes, as the molecular target of echinocandins. In vitro, the echinocandins show potent antifungal activity against Candida and Aspergillus species but are much less potent against C. neoformans. In order to examine why C. neoformans cells are less susceptible to echinocandin treatment, we have cloned a homolog of S. cerevisiae FKS1 from C. neoformans. We have developed a generalized method to evaluate the essentiality of genes in Cryptococcus and applied it to the FKS1 gene. The method relies on homologous integrative transformation with a plasmid that can integrate in two orientations, only one of which will disrupt the target gene function. The results of this analysis suggest that the C. neoformans FKS1 gene is essential for viability. The C. neoformans FKS1 sequence is closely related to the FKS1 sequences from other fungal species and appears to be single copy in C. neoformans. Furthermore, amino acid residues known to be critical for echinocandin susceptibility in Saccharomyces are conserved in the C. neoformans FKS1 sequence.  相似文献   

13.
We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Deltamog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1-1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway.  相似文献   

14.
The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP-Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion-disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules.  相似文献   

15.
16.
The Saccharomyces cerevisiae FAT1 gene appears to encode an acyl-CoA synthetase that is involved in the regulation of very long chain (C20-C26) fatty acids. Fat1p, has homology to a rat peroxisomal very long chain fatty acyl-CoA synthetase. Very long chain acyl-CoA synthetase activity is reduced in strains containing a disrupted FAT1 gene and is increased when FAT1 is expressed in insect cells under control of a baculovirus promoter. Fat1p accounts for approximately 90% of the C24-specific acyl-CoA synthetase activity in glucose-grown cells and approximately 66% of the total activity in cells grown under peroxisomal induction conditions. Localization of functional Fat1p:green fluorescent protein gene fusions and subcellular fractionation of C24 acyl-CoA synthetase activities indicate that the majority of Fat1p is located in internal cellular locations. Disruption of the FAT1 gene results in the accumulation of very long chain fatty acids in the sphingolipid and phospholipid fractions. This includes a 10-fold increase in C24 acids and a 6-fold increase in C22 acids. These abnormal accumulations are further increased by perturbation of very long chain fatty acid synthesis. Overexpression of Elo2p, a component of the fatty acid elongation system, in fat1Delta cells causes C20-C26 levels to rise to approximately 20% of the total fatty acids. These data suggest that Fat1p is involved in the maintenance of cellular very long chain fatty acid levels, apparently by facilitating beta-oxidation of excess intermediate length (C20-C24) species. Although fat1Delta cells were reported to grow poorly in oleic acid-supplemented medium when fatty acid synthase activity is inactivated by cerulenin, fatty acid import is not significantly affected in cells containing disrupted alleles of FAT1 and FAS2 (a subunit of fatty acid synthase). These results suggest that the primary cause of the growth-defective phenotype is a failure to metabolize the incorporated fatty acid rather than a defect in fatty acid transport. Certain fatty acyl-CoA synthetase activities, however, do appear to be essential for bulk fatty acid transport in Saccharomyces. Simultaneous disruption of FAA1 and FAA4, which encode long chain (C14-C18) fatty acyl-CoA synthetases, effectively blocks the import of long chain saturated and unsaturated fatty acids.  相似文献   

17.
Wortmannin is a natural product that inhibits signal transduction. One target of wortmannin in mammalian cells is the 110-kDa catalytic subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We show that wortmannin is toxic to the yeast Saccharomyces cerevisiae and present genetic and biochemical evidence that a phosphatidylinositol 4-kinase (PI 4-kinase), STT4, is a target of wortmannin in yeast. In a strain background in which stt4 mutants are rescued by osmotic support with sorbitol, the toxic effects of wortmannin are similarly prevented by sorbitol. In contrast, in a different strain background, STT4 is essential under all conditions and wortmannin toxicity is not mitigated by sorbitol. Overexpression of STT4 confers wortmannin resistance, but overexpression of PIK1, a related PI 4-kinase, does not. In vitro, the PI 4-kinase activity of STT4, but not of PIK1, was potently inhibited by wortmannin. Overexpression of the phosphatidylinositol 4-phosphate 5-kinase homolog MSS4 conferred wortmannin resistance, as did deletion of phospholipase C-1. These observations support a model for a phosphatidylinositol metabolic cascade involving STT4, MSS4, and phospholipase C-1 and provide evidence that an essential product of this pathway is the lipid phosphatidylinositol 4,5-bisphosphate.  相似文献   

18.
19.
NIP7 encodes a conserved Saccharomyces cerevisiae nucleolar protein that is required for 60S subunit biogenesis (N. I. T. Zanchin, P. Roberts, A. DeSilva, F. Sherman, and D. S. Goldfarb, Mol. Cell. Biol. 17:5001-5015, 1997). Rrp43p and a second essential protein, Nop8p, were identified in a two-hybrid screen as Nip7p-interacting proteins. Biochemical evidence for an interaction was provided by the copurification on immunoglobulin G-Sepharose of Nip7p with protein A-tagged Rrp43p and Nop8p. Cells depleted of Nop8p contained reduced levels of free 60S ribosomes and polysomes and accumulated half-mer polysomes. Nop8p-depleted cells also accumulated 35S pre-rRNA and an aberrant 23S pre-rRNA. Nop8p-depleted cells failed to accumulate either 25S or 27S rRNA, although they did synthesize significant levels of 18S rRNA. These results indicate that 27S or 25S rRNA is degraded in Nop8p-depleted cells after the section containing 18S rRNA is removed. Nip7p-depleted cells exhibited the same defects as Nop8p-depleted cells, except that they accumulated 27S precursors. Rrp43p is a component of the exosome, a complex of 3'-to-5' exonucleases whose subunits have been implicated in 5.8S rRNA processing and mRNA turnover. Whereas both green fluorescent protein (GFP)-Nop8p and GFP-Nip7p localized to nucleoli, GFP-Rrp43p localized throughout the nucleus and to a lesser extent in the cytoplasm. Distinct pools of Rrp43p may interact both with the exosome and with Nip7p, possibly both in the nucleus and in the cytoplasm, to catalyze analogous reactions in the multistep process of 60S ribosome biogenesis and mRNA turnover.  相似文献   

20.
In metazoan cells, the CAS protein has been shown to function as a recycling factor for the importin-alpha subunit of the classical nuclear localization signal receptor, exporting importin-alpha from the nucleus to allow its participation in multiple rounds of nuclear import. CAS is a member of a family of proteins that bear homology to the larger subunit of the nuclear localization signal receptor, importin-beta, and that are found in all eukaryotes from yeast to humans. Sequence similarity identifies the product of the Saccharomyces cerevisiae CSE1 gene as a potential CAS homologue. Here we present evidence that Cse1p is the functional homologue of CAS: Cse1p is required to prevent accumulation of Srp1p/importin-alpha in the nucleus, it localizes to the nuclear envelope in a pattern typical of nuclear transport receptors, and it associates in vivo with Srp1p in a nucleotide-specific manner. We show further that mutations in CSE1 and SRP1 have specific effects on their association and on the intracellular localization of Cse1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号