首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为制备具有良好光致发光功能的聚对苯二甲酸乙二醇酯(PET)发光复合膜,以PET薄膜为基材,通过物理喷涂技术将荧光强度较好的有机稀土发光材料均匀分布在PET膜表面,制备PET发光膜;在PET发光膜表面引入不同聚合物的防护功能层,制备PET发光复合膜,并进行荧光性能测试与表征。结果表明:发光喷涂溶液质量分数为1.50%时所制备的PET发光膜具有最佳的荧光性能,且发光材料在膜表面分散均匀;选用PVDF为防护功能层所制备的PET-PVDF发光复合膜荧光强度最高,达3 158 a.u.,而且在不同激发波长下PETPVDF发光复合膜均可以显现出发光材料中Eu3+的特征荧光发射峰;PET-PVDF发光复合膜的最佳紫外激发波长为301 nm,在最佳激发波长下PET-PVDF发光复合膜具有较好的色纯度,可以显现出靓丽的红光。  相似文献   

2.
采用溶胶-凝胶法制备了高浓度Eu3+掺杂无定型钛酸盐(KBT)发光薄膜.紫外灯下观察,Eu3+掺杂的KBT薄膜发出明亮的红光.通过X射线衍射(XRD)和扫描电镜(SEM)对薄膜的结构和表面形貌进行了分析,利用荧光光谱仪对薄膜的发光性质展开了测试和研究.荧光光谱记录到的Eu3+的发射包括4个强峰,其中Eu3+的5D0→7F2(616 nm)超灵敏跃迁最强.激发光谱和三维荧光光谱分析表明,由于Eu-O的电荷迁移带的吸收作用,Eu3+掺杂的KBT薄膜在短波紫外区被有效激发,是一种高效紫外-可见光转换材料, 为从光-光转换角度提高硅太阳能电池的光能吸收率提供了新思路.  相似文献   

3.
采用黄原胶为原料与丙烯酸接枝共聚制备了高吸水性树脂,考查了合成条件对所制得的高吸水性树脂吸水性能的影响.结果表明,在聚合温度为65℃,丙烯酸单体∶黄原胶=5∶1(质量比),丙烯酸中和度为75%,引发剂和交联剂与丙烯酸单体的质量比分别为0.08和0.031时,所得树脂的吸水倍率可达1026 g.g-1,吸盐水倍率达到716 g.g-1,且吸水速率适中,保水性能较好,是一种新型的环保型高吸水性树脂.  相似文献   

4.
腐植酸-聚丙烯酸盐表面交联吸水性树脂的研究   总被引:2,自引:0,他引:2  
以风化褐煤为原料制备了腐植酸,采用溶液聚合法合成了聚丙烯酸钠吸水性树脂,通过表面交联反应将腐植酸(HA)与聚丙烯酸钠(PSA)复合,制得一种新的表面交联型腐植酸一聚丙烯酸钠吸水性树脂(HA—PSA).通过红外光谱和扫描电镜,分析了表面交联吸水性树脂HA—PSA的吸水机理;研究了甲醇表面处理液浓度、交联剂和腐植酸用量对HA—PSA吸水性能的影响.结果表明,HA可有效改善PSA的吸水性能,当HA—PSA中含有109/6HA,交联剂量与PSA的比值为0.29/6,甲醇表面处理液的Vm/Vw为1.8时,HA—PSA的吸水性能最佳:对去离子水和自来水的吸收量分别为750g/g和260g/g.  相似文献   

5.
通过磁控溅射将二氧化钛(TiO2)沉积在涤纶织物表面形成薄膜,制备二氧化钛/涤纶(TiO2/PET)抗紫外线功能织物,探讨制备过程中磁控溅射时间和溅射功率对织物抗紫外线功能的影响,分析TiO2薄膜的紫外线吸收和屏蔽机理,同时检测织物隔热、热稳定性能的变化情况. 结果表明:在PET织物表面沉积TiO2薄膜可改善织物的抗紫外线性能,归因于TiO2薄膜对紫外光较好的吸收和对紫外可见光有效的屏蔽能力;且因TiO2薄膜在溅射150 W以上的功率下粗糙度增加、厚度减少,当溅射功率为150 W,溅射时间为90 min时,TiO2/PET织物具有较强的抗紫外线能力,其紫外线防护系数(Ultraviolet Protection Factor,UPF)达到1211.19;同时,TiO2薄膜的沉积赋予了PET织物良好的热稳定性能和隔热性能.  相似文献   

6.
采用水浴法和电沉积法制备CdS/Cu2O复合膜,组装成异质结薄膜太阳能电池。通过改变薄膜的厚度,测试了不同厚度的窗口层和吸收层对太阳能电池性能的影响。实验表明,在400 nm厚的CdS薄膜上沉积30次Cu2O薄膜,所获得的复合膜具有最大的填充因子FF(为0.42)和光电转换效率η(0.05%)。并通过实验发现,适当减少CdS窗口层的厚度,可以提高光的透射率,产生更多的光生载流子,提高了光电转换效率。适当增加Cu2O吸收层的厚度,可以提高光的吸收率,产生更多的光生载流子,提高了光电转换效率。  相似文献   

7.
采用脉冲磁控溅射法在石英基底和柔性聚对苯二甲酸乙二醇酯(PET)上分别制备了氧化铟锡(ITO)透明导电薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)对不同基底上ITO薄膜的微观结构及表面形貌进行了对比分析,并且研究了溅射气压、溅射时间和衬底温度等工艺条件对不同基底上制备的ITO薄膜的光透过率和光电性能的影响。结果表明,相同工艺条件下,石英玻璃上ITO薄膜的最佳方块电阻为13.3Ω,可见光透过率为91%;PET上ITO薄膜的最佳方块电阻为15Ω,可见光透过率为85%。二者相比,石英基底上ITO薄膜的光电性能更佳,膜表面的致密度、均匀性更好。  相似文献   

8.
为制备具有亲水和防污自清洁性能的PVC建筑薄膜,在经低温等离子体改性的PVC薄膜表面涂覆SiO2作为隔离层,然后采用旋涂法将TiO2涂覆于薄膜表面,制备得到PVC/SiO2/TiO2复合膜。利用XRD、FTIR、SEM、EDS等测试手段对复合膜的形貌和结构进行表征,并用接触角测试仪测定了其亲水性能,经紫外光照后,复合膜的接触角由42.2°降为10.9°,结果表明TiO2层的涂覆大大地提高了PVC薄膜的亲水性能。  相似文献   

9.
为制备具有亲水和防污自清洁性能的PVC建筑薄膜,在经低温等离子体改性的PVC薄膜表面涂覆SiO2作为隔离层,然后采用旋涂法将TiO2涂覆于薄膜表面,制备得到PVC/SiO2/TiO2复合膜。利用XRD、FTIR、SEM、EDS等测试手段对复合膜的形貌和结构进行表征,并用接触角测试仪测定了其亲水性能,经紫外光照后,复合膜的接触角由42.2°降为10.9°,结果表明TiO2层的涂覆大大地提高了PVC薄膜的亲水性能。  相似文献   

10.
为解决当下电容式非接触传感器制备过程复杂、传感性能不足以及电介质对性能影响不明的难题,将还原氧化石墨烯@聚甲基丙烯酸甲酯(rGO@PMMA)分散液与聚丙烯酸正丁酯(PBA)胶乳共混后烘干,制备rGO@PMMA/PBA柔性复合薄膜传感器。通过扫描电子显微镜(SEM)、红外光谱仪及紫外光谱仪表征复合粒子表面形貌和rGO的吸附性能,使用电感电容电阻测试仪表(LCR表)探究不同介电性薄膜传感器的非接触传感性能。结果表明:氧化石墨烯(GO)吸附到PMMA上出现褶皱表面,经抗坏血酸(Vc)还原后的rGO仍可稳定吸附于PMMA颗粒表面,形成rGO@PMMA复合粒子;当rGO@PMMA/PBA复合膜中复合粒子rGO@PMMA的含量高至10.0%时,rGO@PMMA/PBA复合膜仍然具有柔性;膜的介电常数和导电性随着膜中复合粒子rGO@PMMA填充量的增高不断增大和增强;传感器性能最优时的复合粒子rGO@PMMA填充量为0.20%,此时的传感器具有柔性以及最小的物体感知尺寸和最远的感知距离,并能辨识浅埋沙土下的物体及方位。该研究结果为制备高性能柔性薄膜非接触式电容传感器提供了一种新方法。  相似文献   

11.
以十六烷基三甲氧基硅烷(HDTMS)对不同粒径的纳米二氧化钛(TiO2)进行有效改性,得到具有疏水效果且可在聚合物基体中分散的纳米填料。以聚乳酸(PLA)作为基体,通过非溶剂诱导相分离法制备超疏水TiO2/PLA复合膜及TiO2/SA/PLA复合膜。其中,TiO2/PLA复合膜的水接触角最高可达152.6°,TiO2/SA/PLA复合膜的接触角最高则可达161.0°。实验中制得的各类复合膜均具有较好的亲油性,对茶籽油的吸油率可达200%以上;此外,复合膜在自然条件下能生物降解,是一种环境友好型的功能材料。  相似文献   

12.
采用电化学沉积法制备Gd2O3∶Eu3+荧光薄膜,通过调节Eu3+离子掺杂浓度来探究具有最佳发光效果的薄膜,利用XRD、SEM,PL光谱和EDS测试分析该种材料的物相构成及表面形貌.结果显示:电化学沉积法制备的薄膜结晶效果好,具有立方晶体结构,掺杂离子Eu3+离子均匀地分布在薄膜中;制备出的荧光薄膜有良好的发光强度,当Gd(NO3)3·6H2O与Eu(NO3)3·6H2O的体积比为10∶1时发光强度最大,但当Eu3+离子掺杂浓度过大时,会出现荧光淬灭现象,电化学沉积法可以制备出具有良好发光性能的荧光薄膜.  相似文献   

13.
用原子层沉积方法在柔性PET衬底上制备了AZO(掺铝氧化锌)薄膜,研究了Al的掺杂对ZnO薄膜的形貌,光学性能和电学性能的影响,结果表明:当掺杂量约为3%的AZO薄膜表面比较平整,晶粒分布比较均匀,薄膜仍具有纤锌矿晶体结构,由于掺杂所引入的应力使得薄膜的C轴取向性有所退化;PL光谱表明,与带边相关的激子发射谱没有明显变化,但与缺陷相关的发光明显增强。同时HALL测试得到AZO薄膜载流子浓度相比ZnO薄膜提高了大约一个数量级(3%Al掺杂时,为3.62X1020),但迁移率有所降低(3%Al掺杂时为9.66cm2V-1S-1)。  相似文献   

14.
以不同取代位点的羧甲基壳聚糖为骨架,通过接枝共聚的方法将亲水性单体丙烯酸、丙烯酰胺接枝到骨架上,制备了3种高吸水性树脂。采用红外光谱、固态核磁、X射线衍射等手段对高吸水性树脂的结构进行了表征,采用扫描电子显微镜对高吸水性树脂的表面形貌进行了观察。并对其性能进行了测试,结果表明:3种高吸水性树脂成功制备且表现出了良好的吸水能力,其中N,O-羧甲基壳聚糖制备的高吸水性树脂,吸水能力可达628 g·g~(-1)。  相似文献   

15.
采用溶胶-凝胶法在玻璃衬底上制备了非晶态ZnO薄膜。用X射线衍射仪(XRD)、扫描探针显微镜(SPM)研究了非晶态ZnO薄膜的晶相和微观形貌,用紫外-可见光光度计和荧光光度计研究了非晶态ZnO薄膜的光学特性。测试结果表明,XRD谱没有任何衍射峰,表明所制备的ZnO薄膜确实是非晶态;非晶态ZnO薄膜的表面平整、光滑,表面粗糙度均值为1.5 nm;在可见光区有很高的透过率,最高值为90%;光学带隙为3.39 eV;其PL谱显示在紫外区384 nm处有较强的紫外发射。  相似文献   

16.
以硅树脂和硅凝胶为原料,制备出一种多孔性的、一体化硅基复合膜.这种硅基复合膜的气体(对H2)渗透率为105~106Barrer,其H2/N2分离因子为3~4.13;Q2/N2分离因子为1~1.29.经过表面处理的硅基复合膜,其H2/N2最大可达16.15;OZ/N2可达5.32.这种复合膜适用于热工业气体的分离.  相似文献   

17.
用1,4-环己二胺(CDA)修饰氧化石墨烯(GO),利用4-磺基邻苯二甲酸(SPTA)对聚乙烯醇(PVA)进行交联,以亲水化的聚偏氟乙烯(PVDF)超滤膜为底膜,通过真空过滤与滴涂,制备SPTA-PVA/CDA-GO/PVDF复合膜.采用全反射傅里叶变换红外光谱(ATR-FTIR)、扫描电子显微镜(SEM)和接触角测试对复合膜表征,并测试复合膜的渗透汽化脱盐性能.结果表明,CDA修饰扩大了GO纳米片的层间距,增加了CDA-GO层的透水性;交联PVA层提高了复合膜的表面亲水性和稳定性,增强了复合膜吸水性和水传输性能.复合膜在70℃对质量分数为3.5%的氯化钠(NaCl)水溶液获得15.6 kg/(m2·h)的水通量和99.99%的脱盐率.  相似文献   

18.
为提高铝合金表面耐磨性能,采用微弧氧化(MAO)技术在硅酸盐电解液中对2024铝合金进行表面处理,制备微弧氧化陶瓷层;然后通过浸泡法在陶瓷层表面覆盖一层油性涂层,形成复合膜层,以期提高铝合金表面耐磨性能。利用扫描电镜(SEM)和X射线衍射仪(XRD)分别观察复合膜层的表面形貌及物相组成;利用原子力显微镜AFM测试复合膜层的表面粗糙度;利用摩擦磨损试验仪分析复合膜层的摩擦系数。在SEM的观察下复合膜层比微弧氧化陶瓷层更为平整。另外,AFM的结果显示复合膜层的表面粗糙度比微弧氧化陶瓷层降低了73%左右;摩擦磨损检测显示复合膜层的摩擦系数在0.1左右,波动幅度较小,而微弧氧化陶瓷层和铝合金的摩擦系数达0.4左右,波动幅度较大。  相似文献   

19.
为了改进空气环境条件下有机无机钙钛矿薄膜的制备工艺,开发了一种间歇式退火(intermittent annealing,IA)方法,以制备高质量无针孔的钙钛矿薄膜,优化光电性能.采用扫描电子显微镜(scanning electron microscope,SEM)、X射线衍射谱(X-ray diffraction,XRD)、紫外可见吸收(ultraviolet-visible,UV-Vis)光谱、光致发光(photoluminescence,PL)光谱等表征,系统比较了在空气环境条件下反溶剂一步法旋涂制备钙钛矿薄膜工艺中,普通退火(traditional annealing,TA)方法和间歇式退火方法处理得到的卤化铅甲胺有机钙钛矿薄膜的形貌、结构和光电性能.结果表明,对于MAPbI_3、MAPbIBr_2和MAPbI_2Br钙钛矿材料,采用间歇式退火方法制备的薄膜均匀致密无针孔,晶粒尺寸显著增大,薄膜结晶性提高,在可见光范围内光吸收能力更强.在空气环境下所得间歇式退火制备的MAPbI_3太阳能电池器件在AM 1. 5的模拟太阳光下,光电转换效率可达11. 5%(有效面积0. 24 cm~2),而在空气环境下以普通退火方法制备的器件的光电转换效率为8. 9%,间歇式退火样品的光电转换效率有大幅度提高.  相似文献   

20.
采用全氟化离子聚合物Nationl 17薄膜作衬底,应用超声波静电自组装技术制备了Nationl 17/MMT复合膜,并在超声波作用下,通过溶胶一凝胶法制备了.Nationl 17./TiO2复合膜.利用红外光谱对复合膜的结构进行了表征,利用扫描电镜对复合膜的微观形貌进行研究.研究结果表明:蒙脱土粒子和二氧化钛粒子已经组装在Nationl 17膜表面;Nationl 17/MMT复合膜表面蒙脱土粒子尺寸较大且分散不均匀;二氧化钛粒子可以均匀地分布在Nationl 17/TiO2复合膜表面,且粒子尺寸较均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号