首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚酰胺66的复配阻燃研究   总被引:3,自引:0,他引:3  
采用35%磷-溴-锑复配阻燃体系对聚酰胺66进行阻燃,极限氧指数可提高到33.6%,达到UL94-V0级(1.6mm),且无熔融滴落。阻燃体系的添加会导致聚酰胺66力学性能的下降,但与无机阻燃体系相比较,磷-溴-锑复配阻燃体系对聚酰胺66的力学性能影响较小。采用扫描电镜观察阻燃剂在聚酰胺66中的分散效果,发现分散均匀的体系,在水中或者在110℃的析出实验条件下,阻燃剂的析出量很小,可以维持较长时间的阻燃效果。  相似文献   

2.
采用氮磷型阻燃剂三聚氰胺聚磷酸盐(MPP)与硼改性酚醛树脂(BPF)组成的复合阻燃体系对玻纤(GF)增强尼龙66( PA66)复合材料进行阻燃,获得了阻燃性能优异、力学性能良好的增强复合材料,研究了协效阻燃剂BPF/MPP配比、BPF/MPP用量及GF用量对阻燃复合材料阻燃性能的影响,采用微型燃烧量热和质量保持率分析方法研究了阻燃复合材料的燃烧及成炭行为,对复合阻燃剂的协效机理进行了讨论.结果表明,当BPF在BPF/MPP中的质量分数为15%时,添加25% BPF/MPP复合阻燃剂可使20% GF增强PA66复合材料达到V-0( 1.6 mm)阻燃级别,极限氧指数增加至25.3%,拉伸强度、弯曲强度、缺口冲击强度分别为116 MPa,132 MPa,7.1 kJ/m2.该复合材料可满足高性能无卤阻燃的使用要求.  相似文献   

3.
研究了以聚氨酯泡沫塑料(RPUF)为阻燃改性基材,不同计量的阻燃剂BPC"一步法"制得阻燃性改性RPUF。通过对阻燃改性的RPUF力学性能、热学性能和阻燃性能的研究分析发现:BPC的加入,有助于提高RPUF热力学稳定性,提高材料的极限氧指数,但随着BPC用量的增加(4 phr),RPUF的压缩强度有所下降。在提升RPUF材料的耐火强度,保障其基础承压能力和机械性能,溴系阻燃剂的最优添加量有待进一步深入研究。  相似文献   

4.
从磷-氮系阻燃剂、阻燃剂类型、协效阻燃剂三个方面制备和研究了高冲击强度、高阻燃性能的玻纤增强阻燃尼龙6(PA6)复合材料。结果表明:三种方法都可以达到阻燃V-0;在溴-锑阻燃基础上,添加磷-氮系阻燃剂,可以提高玻纤增强阻燃PA6的阻燃性,但是会降低力学性能;红磷阻燃制备的复合材料的冲击性能最好;溴-锑阻燃制备的复合材料的拉伸强度和弯曲强度最高,冲击性能最低;有机次膦酸盐制备的复合材料的拉伸强度和弯曲强度最低,冲击性能适中;协效阻燃剂可以降低溴-锑的含量,降低材料成本,阻燃性能保持不变,拉伸强度和弯曲强度略有下降,冲击性能略有上升。得出如下结论:红磷阻燃剂质量分数是6%,以及F2400∶三氧化二锑∶协效阻燃剂质量分数比=17∶5∶2时,玻纤增强阻燃尼龙6复合材料的冲击性能最好,阻燃性达到UL94(1.6 mm)V-0。  相似文献   

5.
研究了无卤、含磷添加型阻燃剂红磷、包覆红磷、聚磷酸铵、包覆聚磷酸铵、含磷膨胀型阻燃剂PNP、三聚氰胺焦磷酸盐等6种阻燃剂对硬质聚氨酯泡沫塑料阻燃及力学性能的影响。结果表明,随着阻燃剂添加量的增加,阻燃硬质聚氨酯泡沫塑料的极限氧指数(LOI)总体上呈升高趋势,拉伸强度呈先上升后下降趋势,而冲击强度呈逐渐下降趋势。包覆红磷和包覆聚磷酸铵阻燃材料的阻燃性能和力学性能均明显好于普通红磷和聚磷酸铵阻燃剂,PNP阻燃材料具有最佳的阻燃性能和力学性能,当PNP添加量为25%时,阻燃材料的LOI为29.5%,拉伸强度和冲击强度分别为5.3 MPa和8.7 kJ/m2。  相似文献   

6.
以十二烷基硫酸钠(SDS)和磷酸酯(MAP)作为复配改性剂,制备了改性镁铝复合阻燃剂。将改性前后复合阻燃剂应用到聚丙烯(PP)体系中,研究了复合材料的阻燃性能和力学性能。结果表明,随着镁铝复合阻燃剂添加量的增多,体系的阻燃性能提高,UL-94阻燃等级达到V-0,但PP的力学性能如拉伸强度、断裂伸长率、冲击强度等会受到不同程度的影响。  相似文献   

7.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

8.
采用硅树脂对三嗪系膨胀阻燃剂(IFR)进行表面包覆改性,并通过静态接触角测试对其进行了润湿性能表征。然后将改性前后的IFR分别添加到聚丙烯(PP)中制备了阻燃PP材料,并测试研究了该材料的阻燃性能、力学性能及耐水性。结果表明:当硅树脂的包覆量为5%时,改性IFR的接触角由改性前的0°上升到了151.3°,表现出超疏水性能。与未改性IFR阻燃的PP材料相比,由改性IFR得到的阻燃PP材料,其阻燃性能略有降低,但阻燃剂与聚合物的相容性以及阻燃PP的力学性能有所改善;同时阻燃PP的耐水性能显著提高,其阻燃剂的水抽出率大大降低。当阻燃剂添加量为20%时,未改性IFR阻燃的PP材料,其阻燃剂抽出率为3.71%,且耐水性测试后材料的阻燃性能明显下降;而改性IFR阻燃的PP材料,其阻燃剂抽出率仅为0.38%,且耐水性测试后材料的阻燃性能基本保持不变,表现出优良的耐水性能。  相似文献   

9.
为提高竹材液化产物所制备的高轻发泡墙体材料的防火性能,分别采用材料内部添加和表面浸泡的方法进行阻燃改性,并评价不同阻燃剂及其添加量对发泡材料阻燃性能的影响。实验结果表明:在材料内部或表面添加选择的阻燃剂不会对材料自身形貌或组分产生明显影响,对材料的力学性能亦不会造成破坏,在材料内部添加3 g膨胀型凝胶-二氧化硅/聚磷酸铵核壳阻燃剂(MCAPP)后压缩强度达到了0.37 MPa,在材料表面浸泡聚硅氧烷后压缩强度达到了0.58 MPa,同时能提高材料的阻燃性能,在材料内部添加聚磷酸铵(M-APP)后极限氧指数提高到33.2%,比改性前提高3%。在材料表面浸泡膨胀型壳聚糖-蒙脱土-聚磷酸铵(CMAp)后点燃时间明显延长,极限氧指数最高达到了31.5%。  相似文献   

10.
无卤阻燃LLDPE/PDMS共混物的研究   总被引:4,自引:0,他引:4  
采用高乙烯基含量硅橡胶(PDMS)与线性低密度聚乙烯(LLDPE)进行熔融共混,并添加阻燃母料,制得LLDPE/PDMS阻燃共混物;研究了无机阻燃剂和PDMS用量对共混物力学性能、阻燃性能的影响以及无机阻燃剂与PDMS的协同阻燃性;同时初步探讨了两者的协同阻燃机理。结果表明:采用添加母料和添加PDMS的方法,提高了无机阻燃剂在基体树脂中的分散性,降低了无机阻燃剂对材料力学性能的破坏,同时提高了无机阻燃剂的阻燃效果;同时添加2 0 %无机阻燃剂与1 0 %PDMS ,共混物的氧指数达到2 8% ,拉伸强度约1 3MPa ,断裂伸长率约4 70 % ;PDMS与无机阻燃剂具有较好的协同阻燃性。  相似文献   

11.
将硬脂酸和硬脂酸钙作为复合改性剂,制得改性氢氧化镁(MH),并用偶联剂(Zr-801)对所得到的粉体进行表面包覆,通过重组自组装合成花球状锆酸酯改性MH。以聚酰胺(PA6)为基体,三聚氰胺氰尿酸盐(MCA)为主阻燃剂,锆酸酯改性MH为协效阻燃剂,制备了PA6复合材料。研究和对比了锆酸酯改性MH的添加量对复合材料阻燃性能和力学性能的影响,并分析了其阻燃机理。结果表明,锆酸酯改性MH的加入能有效提高体系的力学性能,且添加质量分数6%时达到最优;复合材料的氧指数增大,熔滴现象减弱,成炭效果好,综合阻燃性能提高。  相似文献   

12.
为改善聚对苯二甲酸丁二酯(PBT)材料易燃、韧性差等缺点,研制出无卤阻燃增强增韧PBT材料。对比了传统含卤阻燃剂与新型无卤阻燃剂对PBT阻燃性能的影响,并利用氮–磷系无卤阻燃剂HT–202A、玻璃纤维、增韧剂SWR–6B对PBT进行改性,研究了阻燃剂、玻璃纤维、增韧剂对PBT阻燃性能以及力学性能的影响。结果表明,无卤阻燃剂在与含卤阻燃剂含量相当的情况下,可以使PBT阻燃性能达到V–0级;在玻璃纤维含量为30%,阻燃剂HT–202A含量为16%,增韧剂SWR–6B添加量为5%时,PBT材料的阻燃性能达到V–0级,拉伸强度达到101 MPa,弯曲强度达到145 MPa,缺口冲击强度达到9.5 kJ/m~2,综合性能优异。  相似文献   

13.
以超韧阻燃聚对苯二甲酸丁二醇酯(PBT)为研究对象,探讨了弹性体乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)增韧体系、聚烯烃接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)增韧体系以及核壳聚合物甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)/聚碳酸酯(PC)复合增韧体系等对PBT材料力学性能与阻燃性能的影响,同时探讨了十溴二苯乙烷与溴化环氧两种阻燃剂对PBT材料阻燃性能、力学性能以及产品色相等方面的影响.结果表明,MBS/PC复合增韧体系增韧效果最好,材料拉伸强度与弯曲强度保持率最高,同时对材料的阻燃性能的影响也最小;溴化环氧阻燃体系材料弯曲强度更高,拉伸强度与缺口冲击强度保持率更好,同时产品色相白度更高,其阻燃效率相对略低.  相似文献   

14.
产品开发     
《广州化工》2014,(23):253-254
新型本质阻燃高分子材料成发展方向 目前制备阻燃高分子材料的方法主要是添加阻燃剂,但这种方法存在许多不足,如聚合物机械性能下降,阻燃剂易迁移,毒性物质易挥发等。为克服这些缺点,对聚合物进行化学改性制备本身就是具有阻燃性能的新型本质阻燃高分子材料成为研发热点。新型本质阻燃高分子材料主要有:环氧树脂、聚酯、聚酰胺等。化学改性主要是采用无卤含有活泼的易有阻燃性能的原子单体,通过化学反应直接制备自身具有阻燃性能新型环氧树脂、聚酯、聚酰胺等本质阻燃高分子材料,成为发展方向。  相似文献   

15.
阻燃PC复合材料的性能   总被引:1,自引:0,他引:1  
研究了不同配比的阻燃剂A和阻燃剂B对聚碳酸酯(PC)阻燃性能和力学性能的影响。结果表明,阻燃剂A和阻燃剂B对PC具有阻燃作用,添加适量的阻燃剂A和阻燃剂B,材料的极限氧指数从0.248增至0.360.阻燃级别达到UL 94 V-0;并且可有效改善材料的力学性能和热性能,断裂伸长率从93.91%提高到106.93%,弯曲强度从81.46 MPa提高到87.98 MPa,玻璃化转变温度从145℃提高到149℃,同时保持良好的电绝缘性能,满足环保要求。  相似文献   

16.
以氢溴酸三聚氰胺盐(MHB)、聚磷酸铵(APP)、阻燃增效协同剂2、3-二甲基-2、3-二苯基丁烷( DMDPB )3种物质为原料复配成一种新型磷溴氮复合阻燃剂,将不同复配比例的复合阻燃剂添加到聚丙烯(PP)中,对阻燃PP材料的阻燃性能、力学性能及熔体流动速率进行测试,探讨3种物质的最佳复配比;并研究了该复合阻燃剂的添加量对材料阻燃性能的影响。结果表明,当MHB:APP:DMDPB的配比为10:10:1时,为最佳复配比;当磷氮溴复合阻燃剂的添加量为2.0 %(质量分数,下同)时,其极限氧指数值为30.8 %,燃烧等级为UL 94 V-1。  相似文献   

17.
以炭黑(CB)及碳纤维(CF)为复合导电填料,配合溴系或磷系阻燃剂,以玻璃纤维(GF)为增强剂,制备了高强度阻燃导电PA66材料,研究了各种添加剂对材料导电性能、阻燃性能和力学性能的影响。结果表明,为使材料具有较好的导电性能和阻燃性能,导电填料中的CF含量不宜过低或过高,阻燃剂宜采用红磷母粒;当导电填料中CB与CF质量比为2/8、导电填料质量分数为10%,红磷母粒质量分数为12%、GF质量分数为40%时,采用相对黏度为2.37 Pa·s的PA66树脂所制备的高强度阻燃导电PA66材料的阻燃等级达到UL 94 V–0级,表面电阻率为7.6×102Ω,弯曲强度,拉伸强度和缺口冲击强度分别为298,210 MPa和20 kJ/m2,完全满足客户要求,已成功应用于某电力系统部件。  相似文献   

18.
采用双螺杆挤出机共混的方法分别制备了氮–磷膨胀型阻燃聚丙烯(PP)、溴–锑阻燃PP、氮–磷–溴–锑复配阻燃PP和氮–磷–溴–锑复配阻燃玻纤(GF)增强PP,通过力学性能测试、垂直燃烧测试、灼热丝燃烧测试、扫描电子显微镜和热重分析研究了阻燃PP的力学性能、阻燃性能和热性能。结果表明,不同阻燃体系阻燃PP的垂直燃烧等级均达到V–0级,灼热丝引燃温度均高于790℃;氮–磷–溴–锑复配阻燃剂的阻燃效果最优,其阻燃PP的灼热丝引燃温度可达850℃以上;添加10%的GF可有效提高氮–磷–溴–锑复配阻燃PP的力学性能,其拉伸强度、悬臂梁缺口冲击强度、弯曲强度和弯曲弹性模量分别为纯PP的1.59倍、1.56倍、1.93倍和1.88倍,同时灼热丝引燃温度仍在850℃以上,残炭率为23.6%。  相似文献   

19.
采用等量比的聚乙二醇-400/十二烷基硫酸钠(PEG-400/SDS)作为复合改性剂,以硝酸镁和氢氧化钠为原料,制备了改性Mg(OH)_2。将改性Mg(OH)_2与三聚氰胺聚磷酸盐(MPP)复配应用于聚酰胺66(PA66)中,研究了复合材料的阻燃性能和力学性能。结果表明:复配阻燃剂提高了PA66的阻燃性能,且对PA66的力学性能影响较小。  相似文献   

20.
高微  张祺  李玉峰  唐伟伟  张喆 《塑料》2023,(6):44-48+94
为改善聚对苯二甲酸乙二醇酯(PET)的阻燃性能,以膨胀石墨(EG)为载体、钛酸丁酯为钛源,采用水热合成方法制备EG/TiO2复合阻燃剂,研究了复合阻燃剂对PET结晶性能、力学性能和阻燃性能的影响。实验结果表明,EG和TiO2的质量比为2:1,EG/TiO2复合阻燃剂是PET结晶过程中的异相成核剂,添加后,显著改善了PET的力学性能和阻燃性能。当EG/TiO2复合阻燃剂的添加量从0增大至5%时,PET的结晶温度从186.35℃增大至194.50℃,半结晶时间从10.14 min下降至2.85 min,拉伸强度从46.4 MPa增大至57.8 MPa,弹性模量从765.3 MPa增大至1 320.4 MPa,断裂伸长率从5.8%增大至7.6%,极限氧指数从20.4%增大至32.8%,PET从易燃材料转化为难燃材料,并且,阻燃等级从无阻燃等级提高至V-0级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号