首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于三角自卷积窗的介损角高精度测量算法   总被引:1,自引:0,他引:1  
采用快速傅里叶变换(FFT)进行介损角测量时,非同步采样所引起的频谱泄漏造成介损角测量误差较大.为减小这类误差,本文提出了一种基于三角自卷积窗的插值FFT介损角测量方法.三角自卷积窗旁瓣下降快,能有效减少频谱泄漏对介损角测量的影响.采用三角自卷积窗对电压、电流信号进行加权,再运用插值FFT算法求解信号相位参数,可得到较高精度的介损角测量值.对基波频率波动、介损真值变化和谐波注入比例变化等情况下的介损角仿真实验验证了本文算法的准确性和有效性.  相似文献   

2.
在高压电气设备介质损耗角在线监测中,DFT算法用于介质损耗角(介损角)测量时,系统频率的波动所造成的非同步采样将会产生泄露效应,从而会影响介损角测量精度。文章详细地分析了DFT算法非同步采样造成的泄露效应,提出了一种基于Hanning卷积窗的DFT介质损耗角测量算法。该算法采用Hanning卷积窗对电流和电压信号进行加权,利用频谱相位差校正法进行频谱校正以获得基波相位,根据电流与电压的基波相位差计算出介损角。通过仿真给出了该算法在电压频率波动和白噪声变化时计算所得介损角的变化情况,通过分析验证了该算法的有效性。  相似文献   

3.
在高压电气设备介损角在线监测中,由于存在工频周期信号的非同步采样和截断现象,从而造成利用FFT算法计算介损角产生较大的误差。本文分析了非同步采样造成的FFT算法的泄漏效应,提出了一种基于相关Blackman窗的FFT介损角测量算法。该方法采用相关Blackman窗对系统电流与电压信号进行加权,然后利用频谱相位差校正法进行频谱校正以获得基波相位,最后根据电流与电压的基波相位差来计算出介损角。仿真结果表明该算法有效地克服了非同步采样和截断造成的介损角测量误差,并且能够大大降低信号频率波动、高次谐波对介损角测量精度的影响。  相似文献   

4.
加窗FFT是目前应用最为广泛的谐波分析方法。但非同步采样时,离散频谱校正中存在计算准确度与实时性的矛盾。论文结合三角自卷积窗的频谱特性,建立了基于最小二乘法的三角自卷积窗加权电力谐波分析算法。首先利用三角自卷积窗对信号进行加权,以抑制频谱泄漏;其次,采用最小二乘法进行离散频谱校正,构造可以根据精度要求进行调节的频谱校正拟合多项式;最后,根据最小二乘拟合多项式,建立简单、易行的谐波幅值、初相角和频率计算式。非同步采样和非整数周期截断条件下,对白噪声、基波频率波动等情况的谐波参数分析仿真实验验证了算法的有效性和准确性。  相似文献   

5.
为减小采用快速傅里叶变换(fast Fourier transform,FFT)进行介损角测量时,由非同步采样引起的频谱泄漏和栅栏效应对测量结果造成的影响,提出了一种基于卡尔曼基频跟踪的改进FFT介损角测量算法。利用扩展卡尔曼滤波器(extended Kalman filter,EKF)对电网信号进行实时基频跟踪,控制下位机实现基频信号的整周期采样,之后采用加窗FFT算法计算信号的实时相位差,得到介损角测量值。采用EKF基频跟踪整周期采样算法,可以从硬件上实现信号的整周期采样,有效减少非同步采样对介损角测量的影响。基频波动、介损角真值变化、谐波变化及白噪声影响等情况下的介损角仿真实验和实际应用验证了该算法的准确性和有效性。该算法为高精度介损角测量提供了一种新的思路。  相似文献   

6.
《高压电器》2015,(3):88-92
电气设备绝缘介质损耗角(介损角)的实时检测,可以为设备的绝缘监测提供可靠依据。采用FFT算法进行介损角测量时,因非同步采样会造成频谱泄漏,从而影响介质损耗角的测量精度。笔者分析了FFT算法的频谱泄漏效应,在此基础上采用了5点加权FFT算法实现对介损角的检测。该算法对信号傅里叶变换后所得序列中5个点进行加权运算,从而减小了频谱泄漏误差,提高了介损角的测量精度。通过仿真给出了该算法在频率波动、3次谐波变化、采样频率变化、采样点数变化、直流分量变化、介损角理论值变化、初始相角变化及白噪声变化时计算所得介损角的变化情况,验证了该算法的有效性。  相似文献   

7.
非同步采样下,快速傅里叶变换方法(fast Fourier transform,FFT)算法不可避免地存在频谱泄漏和栅栏效应影响,且采集数据量多,计算量大。为了实现介损角的快速、高准确度测量,该文提出并建立一种基于时域准同步的介损角测量方法,利用准同步采样算法精确估计采样信号的基波频率,采用牛顿插值法对电压、电流采样信号进行插值重构,获得时域准同步采样序列,通过FFT频域分析和等效电路模型求解实现介质损耗角的精确计算。这种介损角测量算法不需要利用窗函数和谱线插值算法,能有效改善FFT的频谱泄漏和栅栏效应影响,采集数据量少,算法简单,便于嵌入式系统实现。仿真实验验证了算法的准确性。  相似文献   

8.
李媛  王海云 《电测与仪表》2018,55(17):15-20
采用FFT谐波分析方法进行介质损耗角测量时,由于非同步采样会导致频谱泄露和栅栏效应,给介质损失角测量带来较大误差。为提高介损测量精度,文中提出基于Nuttall窗的三谱线插值介损测量方法。通过加Nuttall窗进行FFT得到离散序列,由三谱线插值进行频谱校正得到电压电流基波相位,根据两者相位差来计算介质损耗角。在基波频率波动、三次谐波含量变化、白噪音存在和采样点数变化的情况下测量介损角。仿真分析结果表明,Nuttall窗具有良好的旁瓣性能,能更好抑制频谱泄露,减小测量误差,所提方法测量介质损耗角时具有较高计算精度。  相似文献   

9.
基于高精度DFT的介损数字测量方法   总被引:27,自引:10,他引:27  
针对离散傅立叶变换 ( DFT)用于介损测量时因系统频率波动难以满足同步采样而产生泄漏误差影响基波相位测量精度的问题 ,作者分析了 DFT算法非同步采样造成的泄漏效应 ,采用加余弦窗的改进方式 ,提出了基于 Black-man- Harris窗的 DFT介损测量方法。数字仿真表明基于加窗 DFT算法的介损测量较原有 DFT算法计算精度显著提高 ,实际测量亦验证了该算法的有效性。  相似文献   

10.
基于加汉宁窗插值的谐波分析法用于介损角测量的分析   总被引:15,自引:0,他引:15  
加汉宁窗插值的谐波分析法可减轻非同步采样对介质损耗角(简称介损角)测量的影响,且实现容易、计算速度快,是一种非常有应用前景的介损角计算方法。为更好地将该方法应用于介损角测量,有必要将该方法在信号成分及测量参数变化情况下计算所得介损角的误差变化情况进行分析。文中分析了该算法的原理,通过仿真给出了该算法的计算速度及在频率波动、谐波变化、直流分量变化、采样频率变化、A/D量化位数变化、采样点数变化、介损角真实值变化、白噪声及脉冲噪声变化时计算所得介损角误差的变化情况,并进行了分析。  相似文献   

11.
结合频谱校正的修正理想采样频率方法用于介损角测量   总被引:2,自引:2,他引:0  
提出了结合频谱校正方法和修正理想采样频率的介损角测量方法,该方法使用加Hanning窗插值的谐波分析法获得信号基波频率的准确值,然后根据获得的频率采用线性插值的方法构造符合同步采样的序列并进行DFT,进而获得信号的介损角。仿真信号的计算结果表明,该算法精确度高、实现容易,是介损角测量的一种很有推广价值的方法。  相似文献   

12.
律方成  李敏 《电测与仪表》2016,53(16):45-49
非同步采样及现场噪声对介损角的精确计算有较大影响,为此,提出了一种基于迭代稀疏分解的介质损耗角测量方法。利用匹配追踪能够将输入信号表示成少量特征明显的信号分量和形式,进而寻找与信号基波相匹配的最优原子即得到基波相位,从而提高介损角计算精度的目的。通过仿真实验,在基波频率发生变化、介损角真值发生变化、谐波所占比例不同、不同比例的噪声等情况下,采用文中方法、加Blackman自卷积窗结合三谱线插值法和加Hanning窗插值高阶正弦拟合法计算得到介损角测量结果,并作对比分析。实验结果表明:基于文中所提方法计算结果精度高,能有效克服频谱泄露及栅栏效应的不足。  相似文献   

13.
冯小华 《高压电器》2006,42(4):260-261
谐波分析法应用于介损测量,在电网频率波动,被测信号含有间谐波的实际条件下,很难做到理想同步采样,由此造成的频谱泄漏将严重影响介损的测量精度。在频域分析了非同步采样条件下,谐波分析法介损测量产生误差的原因,并从介损定义出发得出基于相对测量的加窗谐波分析法能有效提高介损测量精度,仿真结果也证明了所提算法的有效性和可行性。  相似文献   

14.
由于快速傅里叶算法在实际应用中存在栅栏效应和频谱泄漏的问题,且用于测量介质损耗角的精度不高,该文提出一种基于混合卷积窗和改进全相位的高精度介质损耗角测量方法。用主、旁瓣性能更好的混合卷积窗对信号截断以减小频谱泄露,用全相位傅里叶变换具有的"相位不变性"以消除栅栏效应,并针对全相位傅里叶提出差分式相位校正方法。分别在基波频率变动、信噪比变化、谐波含量变化及采样点数的影响下对比验证,结果表明所提方法的检测精度高于加窗插值的傅里叶变换算法,尤其在非同步采样时,其优势更加显著。  相似文献   

15.
非同步采样时,基于谐波分析理论的介质损失角计算结果会有较大误差。为减小该误差,提出一种基于Blackman自卷积窗及三谱线插值修正的介质损失角计算方法。利用旁瓣性能优越的Blackman自卷积窗抑制信号频谱泄漏效应,同时提出利用幅值最大的谱线及其相邻的2根谱线进行三谱线插值以进行频谱校正,进一步提高介质损失角计算精度。在基波频率波动、介质损失角真值变化、谐波比例变化、白噪声影响、采样频率变化的情况下,将所提介质损失角计算方法和基于双谱线插值修正的介质损失角计算方法的计算结果进行对比,结果验证了所提方法的准确性与有效性。搭建了介质损失角模拟测量实验平台,在平台上运用所提方法计算介质损失角,结果表明所提方法的精度较高。  相似文献   

16.
改进基波相位分离法在介损角测量中的应用   总被引:1,自引:0,他引:1  
为有效减少基波相位分离法在非同步采样时给介损角测量带来的误差,提出了加汉宁窗插值的改进基波相位分离法。介绍了该算法的原理,给出了非同步采样情况下该算法的计算公式。因矩形插值积分公式将小积分区间的被积函数看成常量容易导致算法误差增加,所以采用梯形插值积分公式,给出了相应的计算公式,并分析了原因,它可以提高非同步采样时该算法测量所得介损角的准确性;针对该算法需要获得信号频率、且使用硬件方法获得频率时增加系统硬件环节的问题,使用了加汉宁插值谐波分析法快速、高精度获得基波相位分离法需要的信号频率,该算法在获得较高介损角精确度的同时减少了硬件环节。仿真结果显示结合加汉宁窗插值的改进基波相位分离法使非同步情况下的介损角测量精度有所提高,最大误差从4.04×10-4rad下降到了5.52×10-5rad,算法精度在49.5~50.5Hz频率范围内更加稳定,且无需外部条件获得信号频率,是介损角测量的一种有效算法。  相似文献   

17.
厉伟  姜鸣歧 《电气制造》2012,(12):70-73
运用基于传统FFT的谐波分析法进行介损测量时难以满足同步采样和整周期截断,造成的频谱泄漏将影响介损测量精度。引入了一种加窗插值傅里叶变换算法进行介损测量。通过分析加窗信号傅里叶变换的频域表达式,利用谐波频点附近的3根离散频谱的幅值确定谐波谱线的准确位置,进而得到谐波的频率、幅值和相位。仿真结果表明,应用三谱线插值修正算法具有很高的计算准确度,进而验证了该算法的有效性与实用性。  相似文献   

18.
对准同期参量进行精确快速测量是发电机准同期并列成功的关键。非同步采样时,基于谐波分析理论的准同期参量测量结果会产生较大误差,为此提出了基于Rife-Vincent自卷积窗插值校正的发电机准同期参量测量方法。分析了Rife-Vincent自卷积窗主瓣特性以及自卷积阶数对旁瓣性能的影响,同时给出了基于Rife-Vincent自卷积窗的插值频谱校正方法。通过仿真计算,得到了基波频率波动、谐波影响、噪声影响等不同情况下发电机准同期参量测量结果;同时对电压非稳态情况进行了仿真,分析了误差产生原因。仿真结果表明所提方法性能优越,能有效抑制频谱泄露效应。  相似文献   

19.
超低频介质损耗因数测量方法,由于测量信号频率低导致采样时间长,采集数据量大,且在非同步采样时,快速傅里叶变换存在频谱泄露和栅栏效应,影响对介质损耗因数的精确测量。为降低测量信号采样时间和采集数据量,以及非同步采样时频谱泄露和栅栏效应,提出一种基于Prony算法 准同步序列的超低频介损测量方法,利用Prony算法并结合据辨识方法,对采样电压信号的基波频率进行预估,通过Newton插值算法,实现对电压和电流信号的准同步插值重构,获得采样信号的准同步序列,由FFT及介损等效电路模型,对准同步序列进行求解,实现对超低频介质损耗因数的求取。在频率波动、谐波含量变化、介损角变化和不同信噪比的噪声下测量介质损耗因数。仿真结果表明,该方法在软件上实现了准同步采样,有效降低了栅栏效应和频谱泄露对介质损耗因数测量的影响,并且采样时间短,采集数据量少,测量精度高,适用于对超低频介质损耗因数的精确测量。  相似文献   

20.
加窗和插值算法可以有效抑制快速傅里叶变换(FFT)在非同步采样和非整周期截断时产生的频谱泄露和栅栏效应,提高谐波检测精度。在比较不同Rife-Vincent窗、经典窗的频谱特性的基础上,选择五项Rife-Vincent窗做母窗,构建了五项Rife-Vincent自卷积窗的时域、频域函数,并分析五项Rife-Vincent自卷积窗的主瓣特性以及自卷积阶数对旁瓣性能的影响。建立了基于五项Rife-Vincent自卷积窗三谱线插值频谱校正算法。采用多项式拟合的方式推导了简单实用的三谱线插值修正公式。通过仿真,验证了非同步采样时,与其他加窗插值相比,该算法具有更高的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号