共查询到18条相似文献,搜索用时 62 毫秒
1.
近年来,图神经网络由于其丰富的表征和推理能力受到广泛的关注,然而,目前的研究聚焦于卷积策略和网络结构的调整以获得更高的性能,不可避免地面临单一模型局限性的约束。受到集成学习思想的启发,面向图神经网络创新性地提出一套集成学习框架(EL-GNN)。不同于常规的文本和图像数据,图数据除了特征信息外还包括了丰富的拓扑结构信息。因此,EL-GNN不仅将不同基分类器的预测结果进行融合,还在集成阶段额外补充了结构信息。此外,基于特征相似或结构邻居节点通常具有相似标签的先验假设,借助特征图重构,进一步优化集成策略,充分平衡了节点的特征和结构信息。大量实验表明,提出的集成策略取得了良好的成效,并EL-GNN在节点分类任务上显著优于现有模型。 相似文献
2.
3.
图神经网络在半监督节点分类任务中取得了显著的性能. 研究表明, 图神经网络容易受到干扰, 因此目前已有研究涉及图神经网络的对抗鲁棒性. 然而, 基于梯度的攻击不能保证最优的扰动. 提出了一种基于梯度和结构的对抗性攻击方法, 增强了基于梯度的扰动. 该方法首先利用训练损失的一阶优化生成候选扰动集, 然后对候选集进行相似性评估, 根据评估结果排序并选择固定预算的修改以实现攻击. 通过在5个数据集上进行半监督节点分类任务来评估所提出的攻击方法. 实验结果表明, 在仅执行少量扰动的情况下, 节点分类精度显著下降, 明显优于现有攻击方法. 相似文献
4.
深度学习在提取数据特征方面取得了巨大的成功,尤其是在处理节点间关系信息丰富的图数据时,通过在频域上使用图滤波器进行图卷积操作,设计出了多种图神经网络。这些图神经网络主要关注设计固定的滤波器或学习简单的滤波器,但这种对滤波器的简化可能会导致滤波器不能适用于所有的图数据。为了解决上述问题,提出了一种基于元学习和图滤波器的节点分类模型MGCN,以提高图滤波器的普适性。模型利用元学习为图卷积神经网络(GCN)的滤波器学习了一组初始化权重,在对滤波器的权重进行微调之后,模型可以快速地适应新任务。为了验证MGCN的有效性,在6个基线数据集上进行了大量实验。实验结果表明,提出的模型相比于传统图神经网络模型可以适用于更加广泛的图数据。 相似文献
5.
异质图中包含丰富的关系,图神经网络(Graph Neural Networks, GNNs)能够自然地整合节点关系,因此图神经网络在推荐领域显示出巨大的潜力.然而,现有基于图神经网络的推荐大多聚焦于学习用户和项目的表示,忽略了用户和项目间的交互信息.其次,这些模型很少学习元路径的明确表示.为了解决上述问题,本文提出一种基于邻域交互和图神经网络的推荐模型NGRec.该模型学习用户和项目的表示,并通过元路径引导的邻域来获取用户和项目间的交互,最后将节点表示和交互信息进行融合用于推荐.该模型在得到节点有效表示的基础上,融合节点间的交互,增强了推荐效果.在3种不同类型的异质图上进行大量的实验,证明了所提模型在性能上的提升. 相似文献
6.
图数据, 如引文网络, 社交网络和交通网络, 广泛地存在现实生活中. 图神经网络凭借强大的表现力受到广泛关注, 在各种各样的图分析应用中表现卓越. 然而, 图神经网络的卓越性能得益于标签数据和复杂的网络模型, 而标签数据获取困难且计算资源代价高昂. 为了解决数据标签的稀疏性和模型计算的高复杂性问题, 知识蒸馏被引入到图神经网络中. 知识蒸馏是一种利用性能更好的大模型(教师模型)的软标签监督信息来训练构建的小模型(学生模型), 以期达到更好的性能和精度. 因此, 如何面向图数据应用知识蒸馏技术成为重大研究挑战, 但目前尚缺乏对于图知识蒸馏研究的综述. 旨在对面向图的知识蒸馏进行全面综述, 首次系统地梳理现有工作, 弥补该领域缺乏综述的空白. 具体而言, 首先介绍图和知识蒸馏背景知识; 然后, 全面梳理3类图知识蒸馏方法, 面向深度神经网络的图知识蒸馏、面向图神经网络的图知识蒸馏和基于图知识的模型自蒸馏方法, 并对每类方法进一步划分为基于输出层、基于中间层和基于构造图知识方法; 随后, 分析比较各类图知识蒸馏算法的设计思路, 结合实验结果总结各类算法的优缺点; 此外, 还列举图知识蒸馏在计算机视觉、自然语言处理、推荐系统等领域的应用; 最后对图知识蒸馏的发展进行总结和展望. 还将整理的图知识蒸馏相关文献公开在GitHub平台上, 具体参见: https://github.com/liujing1023/Graph-based-Knowledge-Distillation. 相似文献
7.
文本分类被广泛应用于新闻分类、话题标记和情感分析等语言处理场景中,是自然语言处理中的一个基本而重要的任务。目前的文本分类模型一般没有同时考虑文本单词的共现关系和文本自身的句法特性,从而限制了文本分类的效果。因此,提出了一个基于图卷积神经网络的文本分类模型(Mix-GCN)。首先基于文本单词之间的共现关系和句法依存关系,将文本数据构建成文本共现图和句法依存图;接着,利用GCN模型对文本图和句法依赖图进行表示学习,得到单词的嵌入向量;然后通过图池化方法以及自适应融合的方法得到文本的嵌入向量;最后通过图分类方法完成文本分类。Mix-GCN模型同时考虑了文本中相邻单词之间的关系和文本单词之间存在的句法依存关系,提升了文本分类性能。在6个基准数据集上与8种知名文本分类方法进行了比较,实验结果表明Mix-GCN具有良好的文本分类效果。 相似文献
8.
提升卷积神经网络的泛化能力和降低过拟合的风险是深度卷积神经网络的研究重点。遮挡是影响卷积神经网络泛化能力的关键因素之一,通常希望经过复杂训练得到的模型能够对遮挡图像有良好的泛化性。为了降低模型过拟合的风险和提升模型对随机遮挡图像识别的鲁棒性,提出了激活区域处理算法,在训练过程中对某一卷积层的最大激活特征图进行处理后对输入图像进行遮挡,然后将被遮挡的新图像作为网络的新输入并继续训练模型。实验结果表明,提出的算法能够提高多种卷积神经网络模型在不同数据集上的分类性能,并且训练好的模型对随机遮挡图像的识别具有非常好的鲁棒性。 相似文献
9.
近年来,图神经网络在图表示学习领域中取得了较好表现广泛应用于日常生活中,例如电子商务、社交媒体和生物学等.但是研究表明,图神经网络容易受到精心设计的对抗攻击迷惑,使其无法正常工作.因此,提高图神经网络的鲁棒性至关重要.已有研究提出了一些提高图神经网络鲁棒性的防御方法,然而如何在确保模型主任务性能的前提下降低对抗攻击的攻击成功率仍存在挑战.通过观察不同攻击产生的对抗样本发现,对抗攻击生成的对抗连边所对应的节点对之间通常存在低结构相似性和低节点特征相似性的特点.基于上述发现,提出了一种面向图神经网络的图重构防御方法GRD-GNN,分别从图结构和节点特征考虑,采用共同邻居数和节点相似度2种相似度指标检测对抗连边并实现图重构,使得重构的图结构删除对抗连边,且添加了增强图结构关键特征的连边,从而实现有效防御.最后,论文在3个真实数据集上展开防御实验,验证了GRD-GNN相比其他防御方法均能取得最佳的防御性能,且不影响正常图数据的分类任务.此外,利用可视化方法对防御结果做解释,解析方法的有效性. 相似文献
10.
为了解决深度图神经网络中存在的过平滑问题,提出一种基于子图划分的多尺度节点分类方法。该方法以Graph-Inception网络结构为核心,采用一种基于子图划分的数据预处理方法,通过改变图中的网络结构,优化特征聚集方式,有效地抑制了冗余搜索带来的过平滑问题;利用不同尺寸卷积核的组合来提取目标节点多尺度邻域的特征信息,以实现对图神经网络深度扩展的等效,一定程度上抑制了深层网络结构带来的过平滑问题。实验结果表明,该方法能够有效地抑制图神经网络中出现的过平滑问题,在基准数据集PPI、Reddit和Amazon上的分类准确率都得到了不同程度的提高。 相似文献
11.
Many studies on Graph Data Augmentation (GDA) approaches have emerged. The techniques have rapidly improved performance for various graph neural network (GNN) models, increasing the current state-of-the-art accuracy by absolute values of 4.20%, 5.50%, and 4.40% on Cora, Citeseer, and PubMed, respectively. The success is attributed to two integral properties of relational approaches: topology-level and feature-level augmentation. This work provides an overview of some GDA algorithms which are reasonably categorized based on these integral properties. Next, we engage the three most widely used GNN backbones (GCN, GAT, and GraphSAGE) as plug-and-play methods for conducting experiments. We conclude by evaluating the algorithm’s effectiveness to demonstrate significant differences among various GDA techniques based on accuracy and time complexity with additional datasets different from those used in the original works. While discussing practical and theoretical motivations, considerations, and strategies for GDA, this work comprehensively investigates the challenges and future direction by pinpointing several open conceivable issues that may require further study based on far-reaching literature interpretation and empirical outcomes. 相似文献
12.
在机器学习领域,与传统的神经网络相比,图神经网络在社交推荐等任务中发挥着越来越重要的作用,但是目前工作中大多数都使用静态图.针对现有静态图神经网络方法难以考虑社交用户动态特性的问题,通过引入动态图模型提出了一种基于异构动态图模型的社交网络节点分类方法.该方法在动态图建模的基础上,通过基于点边交互的节点特征更新机制和基于循环神经网络的时序聚合方法,实现了高效的动态社交网络节点分类.在多个真实数据集上的实验结果表明,提出方法在动态社交网络数据的节点分类方面有较好的效果,对比静态图和动态图的基准方法有显著的提升. 相似文献
13.
目前,基于多模态融合的语音情感识别模型普遍存在无法充分利用多模态特征之间的共性和互补性、无法借助样本特征间的拓扑结构特性对样本特征进行有效地优化和聚合,以及模型复杂度过高的问题。为此,引入图神经网络,一方面在特征优化阶段,将经过图神经网络优化后的文本特征作为共享表示重构基于声学特征的邻接矩阵,使得在声学特征的拓扑结构特性中包含文本信息,达到多模态特征的融合效果;另一方面在标签预测阶段,借助图神经网络充分聚合当前节点的邻接节点所包含的相似性信息对当前节点特征进行全局优化,以提升情感识别准确率。同时为防止图神经网络训练过程中可能出现的过平滑问题,在图神经网络训练前先进行图增强处理。在公开数据集IEMOCAP 和RAVDESS上的实验结果表明,所提出的模型取得了比基线模型更高的识别准确率和更低的模型复杂度,并且模型各个组成部分均对模型性能提升有所贡献。 相似文献
14.
为了更好地学习网络中的高阶信息和异质信息,基于单纯复形提出单纯复形—异质图注意力神经网络方法—SC-HGANN。首先,用单纯复形提取网络高阶结构,将单纯复形转换为单纯复形矩阵;其次,使用注意力机制从特征单纯复形中得到异质节点的特征;再次,对同质和异质单纯复形矩阵进行卷积操作后,得到同质特征与异质特征,通过注意力算子进行特征融合;最后,得到目标节点的特征并将其输入到节点分类模块完成分类。与GCN、HGNN、HAN等基线方法相比,提出的方法在三个数据集上的macro-F1、micro-F1、precision和recall均有所提升。表明该方法能有效地学习网络中的高阶信息和异质信息,并能提升网络节点分类的准确率。 相似文献
15.
使用神经网络进行漏洞检测的方案大多基于传统自然语言处理的思路,将源代码当作序列样本处理,忽视了代码中所具有的结构性特征,从而遗漏了可能存在的漏洞.提出了一种基于图神经网络的代码漏洞检测方法,通过中间语言的控制流图特征,实现了函数级别的智能化代码漏洞检测.首先,将源代码编译为中间表示,进而提取其包含结构信息的控制流图,同... 相似文献
16.
针对现有正例未标注图学习方法仅提取节点表征信息、独立推断节点类别的问题,提出了一种基于协作推断分类算法,利用节点之间关联信息来帮助推断未标注节点的标签。首先,采用个性化网页排位算法计算每个节点与全体已知正例节点的关联度。其次,采用一个图神经网络学习节点表征信息,与正例关联度联合构造一个局部分类器,预测未标注节点标签;采用另一个图神经网络获取局部节点标签之间依赖关系,与正例关联度联合构造一个关系分类器,协作更新未标注节点标签。然后,借鉴马尔可夫图神经网络方法交替迭代地训练两者,形成多跳步节点标签之间的协作推断;并且,为有效利用正例与未标注节点训练分类器,提出了混合非负无偏风险评估函数。最后,选择两者中任意一个,预测未标注节点的类别。在真实数据集上的实验结果表明,无论是识别单类别正例还是识别多类别合成正例,所述算法均表现出比其他正例未标注学习方法更佳效果,且对正例先验概率误差表现出更好的鲁棒性。 相似文献
17.
针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,并且将这些关系进行融合;最后,每个节点根据自身信息以及与邻域节点关系的信息提取更高层次的特征,作为节点的表示,并且根据该表示对节点进行分类。在微博数据集上,与经典的深度随机游走模型、逻辑回归算法有以及最近提出的图卷积网络算法相比,所提算法分类准确率均有大于8%的提升;在DBLP数据集上,与多层感知器相比分类准确率提升4.83%,与图卷积网络相比分类准确率提升0.91%。 相似文献
18.
股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。 相似文献