首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用气浮-混凝-Fenton氧化组合工艺对垃圾渗滤液进行处理。试验研究结果表明,最佳气浮条件:气水比为45~60mL/L、氧化石蜡皂用量为300mg/L、气浮时间为15min;最佳混凝条件:PAM投加量为9mg/L、PAC投加量为1100mg/L、pH值为5、搅拌强度为200r/min;最佳Fenton氧化条件:pH值为3,Fe2+投加量为0.04mol/L,n(H2O2)/n(Fe2+)为15,反应时间为90min。垃圾渗滤液经过气浮-混凝-Fenton氧化处理后COD、NH3-N得到了较好的去除,最终出水COD、NH3-N、TP可达《生活垃圾填埋场污染控制标准》(GB16889—2008)中的排放浓度限值。  相似文献   

2.
Fenton试剂法深度处理皮革废水生化出水的研究   总被引:6,自引:0,他引:6  
以加工生牛皮为主的皮革厂废水处理站生化出水为研究对象,研究了Fenton试剂对此废水的处理效果及影响因素。试验确定降解此类皮革废水生化出水的最佳条件为:pH值5.0,H2O2投加量600 mg/L,Fe2+的投加量500 mg/L,反应时间50 min。在此条件下,当进水COD的质量浓度为333 mg/L,色度为90倍时,COD和色度的去除率分别达到73.3%和98%,废水COD的质量浓度降至89 mg/L,色度降至5倍以下,达到《污水综合排放标准》(GB8978-1996)皮革废水一级标准。  相似文献   

3.
微波强化Fenton氧化法深度处理抗生素废水研究   总被引:2,自引:0,他引:2  
采用微波强化Fenton氧化法对抗生素废水二级处理出水进行深度处理,通过正交试验和单因素试验得出最佳反应条件为:初始pH为3.0~4.0、H2O2投加量为5 mL/L、n(Fe2+)∶n(H2O2)为1∶10、微波功率为625 W。当抗生素废水二级出水COD为502~516 mg/L时,反应时间6 min,处理出水COD<120 mg/L,COD去除率达到78.0%以上,处理后出水水质满足《发酵类制药工业水污染物排放标准》(GB 21903—2008)。  相似文献   

4.
根据某炼油废水二级生化出水的水质水量特点,采用臭氧催化氧化-曝气生物滤池对炼油废水生化出水进行了试验研究。考察了臭氧投加量、p H对臭氧催化氧化单元COD去除效果的影响,确定了该单元最佳臭氧投加量和最适宜pH,同时考察了pH对曝气生物滤池单元COD和NH_3-N去除效果的影响。结果显示,系统控制进水COD/O_3比=2∶1,pH在7~8,COD在150~250 mg/L,NH_3-N在21.6~59.9 mg/L的水质条件下,该系统不但能够稳定去除COD,且能够高效地去除NH_3-N,COD平均出水浓度为44.1 mg/L,NH_3-N平均出水浓度为2.07 mg/L,出水水质指标完全达到《污水综合排放标准》(GB 8978—1996)一级标准。  相似文献   

5.
以COD为考察目标,采用多相催化臭氧化技术对钻井废水进行处理试验。考察了催化剂投加量、臭氧投加量、pH、反应时间等因素对COD去除效果的影响。试验结果表明:在催化剂投加质量浓度为50 mg/L,臭氧投加量为8.0 mg/min,pH=11和反应时间为30 min时,多相催化臭氧化技术对钻井废水处理效果最好,COD去除率达到88.7%,出水COD降至141.70 mg/L,达到了《污水综合排放标准》(GB 8978—1996)二级标准。  相似文献   

6.
油脂废水经UASB、MSBR处理后的出水COD为200 mg/L左右、色度为100倍,未达到《污水综合排放标准》(GB8978—1996)的一级排放标准。试验以该出水为研究对象,用Fenton正交试验。结果表明反应时间对该体系影响最大,其次是H2O2投加量、Fe SO4·7H2O投加量、初始反应p H。通过单因素优化试验,得出最佳处理条件:反应时间为120 min、[H2O2]为0.75 m L/L、[Fe SO4·7H2O]为0.5 g/L、初始反应p H为4.5。在该条件下,COD去除率达到67%,色度去除率达到55%。  相似文献   

7.
混凝-Fenton法深度处理垃圾渗滤液   总被引:3,自引:1,他引:2  
论文以经SBR生化处理的垃圾渗滤液为研究对象,采用混凝-Fenton法对其进行深度处理。结果表明,聚合硫酸铁(PFS)的最佳投加量为0.6mL/L;Fenton反应最佳工艺条件:pH值为5.04,双氧水/亚铁投量摩尔比为1.2∶1;七水硫酸亚铁加入量为1.2g/L,每小时投加一次,分三次投加;反应时间为3h。在此处理条件下,药剂成本为2.93元/m3,出水COD浓度低于100mg/L,达到国家《生活垃圾填埋污染控制标准》(GB16889-1997)一级排放标准。  相似文献   

8.
非均相催化臭氧化深度处理钻井废水的效能研究   总被引:1,自引:0,他引:1  
采用单独臭氧氧化、MnO2吸附和O3/MnO2催化氧化3种体系对经过混凝处理后的钻井废水进行深度处理,重点研究了O3/MnO2催化氧化体系去除钻井废水中有机物(以COD计)的效能。结果表明:相比单独臭氧氧化和MnO2吸附体系,O3/MnO2催化氧化体系能显著提高COD和TOC的去除率;COD去除率随着臭氧投加量和催化剂投加量的增加、pH的升高和反应时间的增加而增大;在臭氧投加量为80 mg/L、pH为11.5、催化剂投加量为20 g/L、反应时间为40 min的最佳工艺条件下,COD和TOC的去除率分别达到87.51%、83.18%,COD从686.28 mg/L降至85.72mg/L,出水达到《污水综合排放标准》(GB 8978—1996)的一级标准要求。  相似文献   

9.
结合杭州某化工厂的现有工艺,针对该化工厂污水处理出水COD高于GB 21904-2008《化学合成类制药工业水污染物排放标准》,采用Fenton氧化法对其二沉池出水进行深度处理。通过改变原水pH值、H_2O_2/Fe~(2+)质量比投加量、反应时间等因素,来讨论最佳运行参数。试验结果表明,Fenton试剂对化工废水的处理中,在污水pH为5.0、H_2O_2(质量分数为30%)投加量为16 mmol/L、H_2O_2/Fe~(2+)质量比为1︰2.8、反应时间为60 min时的工艺条件下,COD的去除效果最佳。  相似文献   

10.
混凝沉淀法污水深度处理条件优化   总被引:1,自引:1,他引:0  
韩玉珠  马青兰 《净水技术》2011,30(1):42-44,86
采用混凝沉淀法处理二沉池出水,进一步去除水样中的有机物、磷和细菌。通过投加消石灰、聚合氯化铝(PAC)、三氯化铁等试剂,分析了pH值、总磷(TP)、化学需氧量(COD)和细菌指标,找到最佳的处理试剂及其投加量。结果表明:单独投加消石灰的最佳投加量为500 mg/L,综合考虑处理效果和经济因素投加量为500 mg/L的消石灰与15 mg/L的三氯化铁联合投加为最佳。经过处理出水水质达到了景观环境用水水质(GB/T 18921—2002)的标准。  相似文献   

11.
根据四川某石化二级反渗透出水的水质水量特点,采用臭氧氧化-生物滤池对石化浓水进行了处理。考察了臭氧投加量、pH对臭氧氧化效果的影响,确定了臭氧单元最佳臭氧投加量和pH值。结果显示:臭氧投加量在12 mg/L、pH为8~9时,COD进水指标从175 mg/L降低至47.5 mg/L以下,去除率达到约72.8%,氨氮值从17 mg/L降低至4.75 mg/L以下。石化污水处理后的COD、氨氮、总氮等指标达到了《国家污水综合排放标准》(GB8978-1996)中直接排放的水污染物最高允许排放浓度要求。  相似文献   

12.
以某高含盐垃圾渗滤液为研究对象,通过投加混凝剂聚合氯化铝(PAC)和助凝剂聚丙烯酰胺(PAM)对其进行混凝沉淀预处理。单因素试验和正交试验结果表明,最佳混凝条件为PAC投加量为1 050 mg/L,PAM投加量为0.8 mg/L,PAM的投加时间在距离PAC投加之后7 min。在上述最佳处理条件下,原水COD由4 876 mg/L降至2 436 mg/L,COD去除率达50.04%。  相似文献   

13.
采用Fe/C微电解-Fenton氧化-混凝沉淀-生化法组合工艺处理松节油加工废水,首选通过正交和单因素实验,确定Fe/C微电解、Fenton氧化、混凝沉淀等工艺运行的最佳条件,考察COD的去除效果及BOD5/CODCr比值的改变,探讨废水的可生化性的改善;然后通过BAF工艺进行生化处理,确定工艺影响参数,考察废水达标排放的可行性. 结果表明,在铁屑投加量为100 g/L,Fe/C质量比为1.5:1,H2O2投加量为40 mL/L,PAM投加量为8 mg/L时,废水经Fe/C微电解、Fenton氧化、混凝沉淀等工艺预处理后出水COD为200~450 mg/L,COD去除率达98%,BOD5/CODCr比值由0.13提高到0.64,满足后续生化处理要求;生化处理单元采用曝气生物滤池,在水力停留时间为5 h、DO浓度为2~3 mg/L,处理后出水COD、动植物油和色度为50~90, 3~10和30~50 mg/L时,出水水质达到《污水综合排放标准》(GB8978-1996)一级标准.  相似文献   

14.
以实际印染废水排放口的出水为研究对象,考察了微波辅助Fenton试剂氧化法深度处理印染废水的效果和影响因素。结果表明,微波辅助Fenton试剂氧化法对印染废水具有良好的深度处理效果,在进水COD_(Cr)为150~160 mg/L的条件下,处理出水COD_(Cr)小于60 mg/L,达到《污水综合排放标准》(GB 8978-1996)的一级标准。在试验条件下,最佳的反应参数为:初始pH为2.5,FeSO_4·7H_2O投加量为4.4 g/L,30%H_2O_2投加量为8 g/L,微波功率为500 W,微波反应时间为5 min。微波辅助Fenton试剂氧化法的COD_(Cr)去除率可达65.1%。  相似文献   

15.
对混凝-磁分离法处理洗车废水进行了试验研究。将普通混凝和混凝-磁分离处理洗车废水的效果对比试验,并研究了适宜的磁粉与混凝剂的搭配组合和最佳投加量。试验结果表明纯铁粉与PAC+PAM为最佳组合,最佳投加量为铁粉250 mg/L、PAC、PAM投加量分别为100 mg/L、6 mg/L,处理出水的COD为46.05 mg/L,浊度为4.13 NTU。  相似文献   

16.
采用混凝-UV/Fenton氧化联合工艺对废切削液进行处理。通过对各影响因素进行考察,确定了混凝最佳条件:pH为7,PAC投加量2 000 mg/L,助凝剂CPAM投加量10 mg/L;UV/Fenton氧化最佳条件:H_2O_2投加量0.9 Qth,n(H_2O_2)∶n(Fe~(2+))=50∶1,反应时间为120 min。在最佳工艺条件下,废切削液经混凝-UV/Fenton处理后,COD由21 400mg/L降为432 mg/L,油质量浓度由4 940 mg/L降为2 mg/L,BOD_5/COD由原水的0.069增至0.784,出水可直接进行生物处理。实验证明,混凝-UV/Fenton处理废切削液可行。  相似文献   

17.
采用臭氧氧化-生物接触氧化工艺处理黑臭水。考察了臭氧投加量、p H在臭氧氧化阶段对COD的影响,p H在生物接触氧化阶段对COD和NH3-N的去除效果,得到了各单元的最佳反应条件。在臭氧投加量为90~150mg/L,黑臭水p H为7~8情况下,黑臭水经过臭氧氧化-生物接触氧化工艺处理后,出水的平均COD为42.8 mg/L,氨氮的平均质量浓度为3.9 mg/L,达到污水综合排放标准(GB 8978-1996)一级标准。  相似文献   

18.
采用多级生物处理-Fenton流化床组合工艺处理某石化企业的炼油污水,重点考察了水力停留时间对多级生物处理系统的影响以及p H、n(H_2O_2)/n(Fe~(2+))、H_2O_2投加量对Fenton流化床处理效果的影响。结果表明,在最佳工艺条件下,当组合工艺总水力停留时间为45 h时,出水COD始终低于30 mg/L,平均COD去除率达到96.54%;出水氨氮维持在0.05 mg/L,平均氨氮去除率为99.72%,处理后出水水质满足《污水综合排放标准》(GB 8978—1996)的一级排放标准。  相似文献   

19.
针对传统SBR工艺污泥絮体结构松散,沉降速率低等问题,实验采用磁化技术处理生活污水。考察磁粉(微米Fe_3O_4)对生活污水处理效果的影响,确定最佳磁粉投加量。结果表明,磁化污泥处理污水的效果要优于普通活性污泥,最佳磁粉投加量为0.5~0.7 g/L,综合考虑经济和处理效果两方面因素,选择磁粉投加量0.5 g/L较为合适。此时平均出水COD、氨氮、总氮和总磷的平均去除率分别为95.30%、91.48%、70.83%和92.80%,平均出水COD为16.60 mg/L,平均出水氨氮、总氮和总磷浓度分别2.74、10.01、0.53 mg/L,达到城镇污水处理厂污染物排放标准(GB1891-2002)一级标准。  相似文献   

20.
采用Fenton/SBR组合工艺深度处理头孢类制药废水二级生化出水。试验结果表明:在反应pH=4、FeSO4.7H2O投加浓度为0.6 mmol/L、H2O2(30%)投加浓度为20 mmol/L,反应时间为80 min情况下,COD由250 mg/L降到90 mg/L,B/C由0增加到0.51,可生化性得到较大提高。再在SBR内进行4 h的生化处理,出水COD降到40.3mg/L,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号