首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
轿车车身NVH特性研究分析   总被引:1,自引:0,他引:1  
车身结构与车室声腔模态分析是车身NVH特性研究的重要内容,识别车身系统模态对避免车身结构与声腔共振、降低车内噪声有着重要的意义。以某轿车车身为例,利用有限元法建立车身结构模型和车室声腔模型,分别进行模态分析计算,获得车身结构的模态频率和变形部位、空腔声学系统的声学模态频率和声压分布情况,为车身系统结构与声学优化设计提供依据。  相似文献   

2.
某越野车在以中间档位低转速加速时出现明显的共振及轰鸣声问题,极大影响了汽车的乘坐舒适性,主观评价不可接受.道路测试发现:在发动机转速约为1 300 r/min时,车内轰鸣噪声比较明显,并且在常用车速95 km/h,后桥位置出现明显振动.通过频谱分析和模态分析,认为车内轰鸣声是由于发动机二阶扭转激励经由传动系与后桥共振放大传递给车身从而引起车内振动噪声.采用在传动轴末端加装扭转减振器的调校手段,显著提高了样车的NVH性能.  相似文献   

3.
针对某车型NVH开发过程中怠速关空调工况下,车内噪声声压级偏高、声品质较差的问题,对样车进行试验诊断分析,通过试验诊断明确怠速噪声偏大的原因是燃油泵工作时产生的振动和噪声通过结构传递路径传至车内;通过对燃油泵转向器和进、出油板进行优化降低燃油泵的振动和噪声,实车试验验证表明优化后的燃油泵在怠速关空调工况下车内噪声比改进前降低了4.9 dB(A),改进效果明显;同时主观评价车内舒适性明显提高。  相似文献   

4.
车内低频噪声的控制一直是汽车行业NVH控制的难点。作者提取某款A级车车内声腔进行声场声学特性分析并以发动机作为激励源进行实验,发现车内噪声与声腔声场特性之间具有强相关性,提出引入亥姆霍兹共振腔改变车内声场声学特性,通过控制共振峰幅值实现车内低频噪声控制,对共振腔形式及尺寸参数进行优化后提出了一套车内共振腔设计优化方案,采用路噪测试的方法验证了方案的可行性。结果表明,在某A级车内使用优化后的亥姆霍兹共振腔能降低车内的70Hz以下的低频噪声。  相似文献   

5.
阐述了模态密度的基本理论,给出了曲面曲率变化时模态密度的半经验计算公式。建立了某国产轿车的统计能量分析模型,计算了各简化子系统的模态密度,并采用FEA方法对车身各子系统的模态密度进行了计算,将简化子系统时计算的模态密度与FEA计算的模态密度进行了对比分析。分析预测了车速为100km/h时车内驾驶员耳旁噪声的1/3倍频程频谱,并将采用简化子系统计算模态密度时的车内噪声1/3倍频程频谱和采用FEA方法计算模态密度时的车内噪声1/3倍频程频谱分别与试验测量结果进行了对比,分析了各子系统模态密度的计算精度对车内噪声预测精度的影响。结果表明,准确获取车身各个子系统的模态密度可以有效地提高SEA模型预测精度,使车内噪声预测误差在1dB(A)以内,满足工程上在汽车产品开发设计阶段对车内中高频噪声分析预测的要求,可为汽车产品开发设计阶段的声学设计提供参考。  相似文献   

6.
汽车排气系统对车内噪声有重要影响,针对车内噪声控制问题,采用试验和仿真相结合的方法,对实车进行了多工况测试,对排气系统进行了模态仿真分析.实车测试结果表明,通过排气系统悬挂点传播的振动噪声是引起车内噪声的重要因素,排气系统模态仿真结果表明,原悬挂点偏离模态节点需进行优化.对悬挂点优化后的排气系统进行了验证试验,结果表明:排气系统悬挂点优化后,车内噪声有明显降低,平均降噪2.5 dB(A),后排降噪量达5 dB(A),研究成果可以指导工程应用.  相似文献   

7.
整车NVH开发过程中,在怠速关空调工况下,车内噪声声压级相比竞品车偏高,整车内声品质较差.通过分析优化燃油系统、附件皮带以及前悬置支架,使怠速车内噪声声压级达到竞品车水平,通过主观评价和客观测量分析得出车内声品质改善明显,提升了整车怠速时的NVH性能.  相似文献   

8.
为了研究发动机激励对车内振动和噪声的影响,通过对某款国产乘用车进行振动和噪声测试实验,采集加速工况下的发动机悬置振动信号和车内振动与噪声信号,利用阶次分析方法对信号进行数据处理,分析车内振动和噪声产生的原因.通过计算各个悬置的隔振率,分析悬置隔振性能对车内振动和噪声的影响.结果表明,左悬置和右悬置隔振性差是引起车内振动的主要原因,后悬置振动是引起车内噪声的主要因素,发动机激励传递到悬置系统产生的振动是引起车内振动和噪声的主要原因.  相似文献   

9.
建立了含门窗的车身结构有限元模型、车内声场有限元模型及结构-声场耦合模型,进行了车内耦合声场预测。建立了车内声场声压灵敏度分析模型,研究了声场边界导纳和壁板振动速度的声压灵敏度,并根据分析结果优化了关键板件的加强筋和厚度,优化后车内声压主要峰值降低2~3 dB(A)。  相似文献   

10.
论文建立了某轻型客车的白车身有限元分析模型,并根据白车身连接点刚度的灵敏度分析,确定了白车身有优化设计的设计变量;根据白车身自由模态分析,确定了轻量化设计的约束条件,从而建立了白车身优化设计的数学模型,在保证原白车身的性能不降低的基础上对其进行了优化设计。  相似文献   

11.
为了研究胎面结构设计参数对轮胎振动噪声的影响及降噪机理,以295/80R22.5载重子午线轮胎为研究对象,利用模态声学向量技术对轮胎振动噪声进行模拟分析,采用面板声学贡献度分析方法研究在噪声声压峰值所对应频率下轮胎外轮廓各部件的声学特性,找到胎面为主声学正贡献部件.选取显著影响胎面结构的参数为设计变量,通过正交试验法分析各参数改变对轮胎振动噪声的影响规律.结果表明,轮胎振动噪声随带束层端点至旋转轴半径以及胎冠点至旋转轴半径的增大而减小,随带束层压力分布形状系数以及带束层压力分担率的增加先减小后增加.通过正交试验极差分析得到低噪声轮胎的最优胎面参数组合,并从轮胎各部件对振动噪声的贡献度角度揭示了低噪声轮胎的降低机理.  相似文献   

12.
建立某型工程车辆驾驶室的结构有限元模型、空腔声学有限元模型。对驾驶室结构和室内空腔声场进行模态分析,得到结构振动特性和声学特性。计算分析驾驶室声一结构耦合模型在特定频率激励下的噪声分布情况,同时考虑吸声材料对驾驶员耳旁声压级值的影响,总结出在新车型开发阶段进行车内噪声预测和控制研究的有效方法。  相似文献   

13.
针对某车型全加速工况下引起的车内噪声及底板振动问题,应用LMS公司的Test.Lab动态测试系统对发动机动力总成进行振动、噪声和不平顺性测试,通过频谱分析和模态实验响应分析找到引发车内噪声和振动的相关故障频率;通过Hyperworks软件对发动机后悬置支架进行仿真计算,对比试验结果和仿真结果,发现其低阶固有频率过低,与发动机的工作状态频率发生共振,使车内声品质变差,主观感觉底板有明显抖动.为此提出改进发动机后悬置支架结构来改变支架固有频率的方案,使其与发动机工作频率错开.进一步试验发现,车内噪声和底板抖动问题得到明显改善.  相似文献   

14.
为提高乘车的舒适性,有效合理地降低车内振动和噪声已成为乘用车研究重点内容之一。传递路径分析(Transfer Path Analysis,TPA)是提高整车噪声、振动及声振粗糙度(Noise Vibration Harshness,NVH)性能的一种有效方法。针对某SUV车内噪声问题,基于OPAX(Operational-X Transfer Path Analysis)方法,利用工况数据辅以系统频响函数,进行工作载荷的识别,从而获得动力总成振动影响车内噪声的传递路径贡献量。结果表明,右悬置的隔振效果差。与偏相干分析结果进行对比,结论一致。  相似文献   

15.
为了降低冷却风扇对车内噪声的影响,采用理论分析与实车试验相结合的方法,在分析"拍振"机理的基础上讨论了双冷却风扇"拍振"形成的原因;以某B级车车内噪声为研究对象,进行了双冷却风扇优化前后的对比试验.研究结果表明:当转速差较小时,双冷却风扇因各自动不平衡引起的两个振动会合成"拍振",影响车辆舒适性;实测车内噪声含明显的冷却风扇噪声成分,且"拍振"现象明显;通过调整两冷却风扇转速差到20%和减小动不平衡量10%,发动机怠速、冷却风扇高速运转时车内噪声由优化前48.32dB(A)降低至46.86 dB(A),降噪效果明显.  相似文献   

16.
采用Hypermesh软件建立了某SUV车内声腔有限元模型,通过Virtual.lab软件对该模型进行了自由模态分析计算;利用Virtual.lab对车身结构进行频响分析,并利用计算结果对车内噪声水平进行了计算,对选定板件对车内噪声水平贡献量进行分析,并根据分析结果提出了简单的降噪方案。  相似文献   

17.
永磁同步电机对转矩输出的平滑性有较高要求.内置式永磁同步电机受齿槽转矩、磁阻转矩脉动、电磁转矩脉动等因素影响,输出转矩脉动相对较大,增加了电磁噪声和输出的不稳定性.基于一台20 kW永磁同步电机建立有限元模型,验证模型的准确性.以电机最大输出转矩、最小转矩脉动、最小齿槽转矩为优化目标,对电机转子结构参数进行灵敏度分析,并综合NSGA-Ⅱ算法和单变量参数法进行分层优化.与单层优化相比,分层优化对易受变量影响的目标提升效果更好.声学仿真验证了优化后的转子结构对电磁噪声改善效果显著.  相似文献   

18.
利用某国产轿车的声固耦合有限元模型对车内低频噪声进行了预测、分析和优化,并通过实车道路试验得到动力总成悬置激励、路面通过悬架传递到车身的激励以及驾驶员耳旁声压级响应。将测得的激励施加于模型中的相应位置进行频率响应分析,并预测车内低频噪声。从预测结果与试验结果的对比可以看出,二者具有较好的一致性,证明了轿车声固耦合模型的有效性。分析了驾驶员耳旁声压级对车身结构各壁板的灵敏度,根据灵敏度分析结果,应用涂贴阻尼层的方法对车内噪声进行控制,通过对阻尼层的试验优化设计,优化了涂贴阻尼层的密度及厚度。优化后车内噪声峰值降低了1.13dB(A),总声压级降低了0.62dB(A),阻尼层的总质量降低了1.935kg。  相似文献   

19.
LF520车室声腔模态分析   总被引:2,自引:0,他引:2  
采用Hypermesh软件建立了某车型的室内声场有限元模型,用SYSNOISE软件对该有限元模型进行自由模态分析,得到声场的各阶模态频率和振型,将声模态分析结果与汽车内外部的激励源频率特性进行对比,为改善车内声学特性,对车内噪声预测提供了参考。  相似文献   

20.
汽车车内噪声是评价汽车乘坐舒适性的一个重要指标,以某三厢乘用车为研究对象,采用无网格局部径向基点插值法分析了汽车车身车内声模态问题.首先采用径向基函数作为近似式函数,然后采用强式配点法离散控制方程,对于导数边界条件,采用直接法得到等效的一组方程,综合求解所得出的计算结果与有限元方法相比吻合度很好,且无网格方法模拟简单高效,计算精度高,适用较高的频率范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号