首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sample preparation procedures for biological atomic force microscopy   总被引:4,自引:0,他引:4  
Since the late 1980s, atomic force microscopy (AFM) has been increasingly used in biological sciences and it is now established as a versatile tool to address the structure, properties and functions of biological specimens. AFM is unique in that it provides three-dimensional images of biological structures, including biomolecules, lipid films, 2D protein crystals and cells, under physiological conditions and with unprecedented resolution. A crucial prerequisite for successful, reliable biological AFM is that the samples need to be well attached to a solid substrate using appropriate, nondestructive methods. In this review, we discuss common techniques for immobilizing biological specimens for AFM studies.  相似文献   

2.
We describe a technique for studying living cells with the atomic force microscope (AFM) in tapping mode using a thermostated, controlled-environment culture system. We also describe the integration of the AFM with bright field, epifluorescence and surface interference microscopy, achieving the highest level of integration for the AFM thus far described. We succeeded in the continuous, long-term imaging of relatively flat but very fragile cytoplasmic regions of COS cells at a lateral resolution of about 70 nm and a vertical resolution of about 3 nm. In addition, we demonstrate the applicability of our technology for continuous force volume imaging of cultured vertebrate cells.
The hybrid instrument we describe can be used to collect simultaneously a diverse variety of physical, chemical and morphological data on living vertebrate cells. The integration of light microscopy with AFM and steady-state culture methods for vertebrate cells represents a new approach for studies in cell biology and physiology.  相似文献   

3.
Bacillus thuringiensis Cry delta-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin.  相似文献   

4.
In this study we report an atomic force microscopy (AFM) investigation of the actin cortical cytoskeleton of Xenopus laevis oocytes. Samples consisted of inside‐out orientated plasma membrane patches of X. laevis oocytes with overhanging cytoplasmic material. They were spread on a freshly cleaved mica surface, subsequently treated with Triton X‐100 detergent and chemically fixed. The presence of actin fibres in oocyte patches was proved by fluorescence microscopy imaging. Contact mode AFM imaging was performed in air in constant force conditions. Reproducible high‐resolution AFM images of a filamentous structure were obtained. The filamentous structure was identified as an actin cortical cytoskeleton, investigating its disaggregation induced by cytochalasin D treatment. The thinnest fibres showed a height of 7 nm in accordance with the diameter of a single actin microfilament. The results suggest that AFM imaging can be used for the high‐resolution study of the actin cortical cytoskeleton of the X. laevis oocyte and its modifications mediated by the action of drugs and toxins.  相似文献   

5.
The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol‐functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (<1 Å). The first imaging studies showed the morphology of various biomolecules followed by rapid progress in visualizing whole bacterial cells. The AFM technique gradually developed into a lab‐on‐a‐tip allowing more quantitative analysis of bacterial samples in aqueous liquids and non‐contact modes. Recently, force spectroscopy modes, such as chemical force microscopy, single‐cell force spectroscopy, and single‐molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell–cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow. SCANNING 32: 74–96, 2010. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
In this mini-review we discuss our recent findings on imaging and manipulation of biological macromolecular structures by atomic force microscopy (AFM). In the first part of this review, we focus on high-resolution imaging of selected biological samples. AFM images of membrane proteins have revealed detailed conformational features related to identifiable biological functions. Different self-assembling behaviors of short peptides into supramolecular structures on various substrates under controlled environmental conditions have been systematically studied with AFM imaging. In the second part, we present a novel nano-manipulation technique for manipulating, isolating, amplifying, and sequencing of individual DNA molecules, which may find unique applications in the analysis of difficult sequence structures. Finally, we discuss how to characterize the elasticity of individual biomolecules and live cells. These results demonstrate that not only the high resolution capacity of the AFM is suited to resolve certain biological questions, but can also be applied to single molecule isolation and biomechanical analysis with its unique advantages.  相似文献   

7.
Method of imaging low density lipoproteins by atomic force microscopy   总被引:1,自引:0,他引:1  
This short paper reports a simple method to image low density lipoproteins (LDL) using atomic force microscopy (AFM). This instrument allows imaging of biological samples in liquid and presents the advantage of needing no sample preparation such as staining or fixation that may affect their general structure. Dimensions (diameter and height) of individual LDL particles were successfully measured. AFM imaging revealed that LDL have a quasi-spherical structure on the x and y axis with an oblate spheroid structure in the z axis (i.e., height). LDLs were found to have an average diameter of 23 +/- 3 nm. The obtained mean height was 10 +/- 2 nm.  相似文献   

8.
The potential use of atomic force microscopy (AFM) to image the mode of assembly and to measure the corresponding lattice parameters of model systems consisting of ordered aggregates of cardiolipin molecules has been investigated. An unprecedented resolution of about 0·2 nm has been achieved on suitably prepared specimens. This enables the orientational order and the positional correlations of the individual molecules in the lattice to be defined, and submolecular details, such as the acyl chains and the polar groups, to be imaged. The structural parameters derived from AFMhave been compared with those obtained by transmission electron diffraction of the same specimen and found to be in excellent agreement. AFM turns out to be a powerful and probably a unique tool to reveal local phase variations in systems, such as biological membranes, that have non-homogeneous composition and organization.  相似文献   

9.
A chemical procedure for anchoring DNA molecules to gold surfaces was used to facilitate the imaging of DNA and DNA-protein complexes in buffer solution by tapping mode atomic force microscopy (TMAFM). For preparing flat gold surfaces, a novel approach was employed by evaporating small amounts of gold onto freshly cleaved mica to give flat films that were stable under aqueous buffer conditions. The thickness of the investigated films ranged from 1 to 10 nm. For typical films of 4-6 nm, which were stable under aqueous buffer conditions, the root mean square (RMS) roughness ranged between 0.25 and 0.5 nm, as measured by atomic force microscopy (AFM). This roughness is comparable to that of obtained by the template stripped gold (TSG) technique, which is widely used in scanning probe microscopy but involves more preparation steps. In order to visualize DNA and DNA-protein complexes by TMAFM, the DNA was chemisorbed to the gold surface through a linker carrying a terminal thiol group at the 5'-end of each of the DNA strands. The modified DNA fragments were bound to the gold films and imaged in buffer solution, while unmodified DNA could not be visualized. Since the DNA was not dried during the process, it can be assumed that its native conformation was retained. This mode of anchoring did not prevent interaction with proteins, as confirmed by the observation that the topology of a complex formed by adding the protein to a surface-anchored DNA was the same as that obtained by anchoring a pre-formed complex to the gold surface. We attribute this observation to the fact that the DNA is anchored to the gold surfaces only through its ends, therefore the DNA-support interaction is minimized but imaging is still possible.  相似文献   

10.
Ge G  Han D  Lin D  Chu W  Sun Y  Jiang L  Ma W  Wang C 《Ultramicroscopy》2007,107(4-5):299-307
Magnetic AC mode (MAC mode) atomic force microscopy (AFM), a novel type of tapping mode AFM in which the cantilever is driven directly by a magnetic field, is a powerful tool for imaging with high spatial resolution and better signal-to-noise in liquid environment. It may largely extend the application of AFM to living samples, especially those are sensitive to cantilever forces, even to multilayer tissue samples. However, there are few reports on the imaging of living cells by MAC mode AFM previously. In our present study, we explore the optimal imaging conditions of MAC mode AFM on living astrocytes and fresh arterial intima surface. We also used nude tips for PicoTREC panel (i.e., Aux in BNC, a new data collecting channel) to image living samples and discussed its difference with phase imaging. We show that living biological samples can be imaged by MAC mode AFM at details of comparable resolution as those by high resolution scanning electron microscopy. Furthermore, the combination of height, amplitude, phase and TREC panel signals provide abundant informations for the characteristics of living samples, such as topography, profile, stiffness and adhesion.  相似文献   

11.
Scanning probe microscopes derived from the scanning tunnelling microscope (STM) offer new ways to examine surfaces of biological samples and technologically important materials. The surfaces of conductive and semiconductive samples can readily be imaged with the STM. Unfortunately, most surfaces are not conductive. Three alternative approaches were used in our laboratory to image such surfaces. 1. Crystals of an amino acid were imaged with the atomic force microscope (AFM) to molecular resolution with a force of order 10?8 N. However, it appears that for most biological systems to be imaged, the atomic force microscope should be able to operate at forces at least one and perhaps several orders of magnitude smaller. The substitution of optical detection of the cantilever bending for the measurement by electron tunnelling improved the reliability of the instrument considerably. 2. Conductive replicas of non-conductive surfaces enabled the imaging of biological surfaces with an STM with a lateral resolution comparable to that of the transmission electron microscope. Unlike the transmission electron microscope, the STM also measures the heights of the features. 3. The scanning ion conductance microscope scans a micropipette with an opening diameter of 0·04-0·1 μm at constant ionic conductance over a surface covered with a conducting solution (e.g., the surface of plant leaves in saline solution).  相似文献   

12.
Atomic force microscopy (AFM) is an emerging technique for imaging biological samples at subnanometer resolution; however, the method is not widely used for cell imaging because it is limited to analysis of surface topology. In this study, we demonstrate identification and ultrastructural imaging of microfilaments using new approaches based on AFM. Photodynamic therapy (PDT) with a new chlorin-based photosensitizer DH-II-24 induced cell shrinkage, membrane blebbing, and reorganization of cytoskeletons in bladder cancer J82 cells. We investigated cytoskeletal changes using confocal microscopy and atomic force microscopy. Extracellular filaments formed by PDT were analyzed with a tandem imaging approach based on confocal microscopy and atomic force microscopy. Ultrathin filaments that were not visible by confocal microscopy were identified as microfilaments by on-stage labeling/imaging using atomic force microscopy. Furthermore, ultrastructural imaging revealed that these microfilaments had a stranded helical structure. Thus, these new approaches were useful for ultrastructural imaging of microfilaments at the molecular level, and, moreover, they may help to overcome the current limitations of fluorescence-based microscopy and atomic force microscopy in cell imaging.  相似文献   

13.
Atomic force microscopy (AFM) proved to be able to obtain high‐resolution three‐dimensional images of single‐membrane proteins, isolated, crystallized, or included in reconstructed model membranes. The extension of this technique to native systems, such as the protein immersed in a cell membrane, needs a careful manipulation of the biological sample to meet the experimental constraints for high‐resolution AFM imaging. In this article, a general protocol for sample preparation is presented, based on the mechanical stretch of the cell membrane. The effectiveness for AFM imaging has been tested on the basis of an integrated optical and AFM approach and the proposed method has been applied to cells expressing cystic fibrosis transmembrane conductance regulator, a channel involved in cystic fibrosis, showing the possibility to identify and analyze single proteins in the plasma membrane. Microsc. Res. Tech. 76:723–732, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Li X  Ji T  Hu J  Sun J 《Ultramicroscopy》2008,108(9):826-831
High resolution imaging of intracellular structures of ultrathin cell section samples is critical to the performance of precise manipulation by atomic force microscopy (AFM). Here, we test the effect of multiple factors during section sample preparation on the quality of the AFM image. These factors include the embedding materials, the annealing process of the specimen block, section thickness, and section side. We found that neither the embedding materials nor the temperature and speed of the annealing process has any effect on AFM image resolution. However, the section thickness and section side significantly affect the surface topography and AFM image resolution. By systematically testing the image quality of both sides of cell sections over a wide range of thickness (40-1000 nm), we found that the best resolution was obtained with upper-side sections approximately 50-100 nm thick. With these samples, we could observe precise structure details of the cell, including its membrane, nucleoli, and other organelles. Similar results were obtained for other cell types, including Tca8113, C6, and ECV-304. In brief, by optimizing the condition of ultrathin cell section preparation, we were able to obtain high resolution intracellular AFM images, which provide an essential basis for further AFM manipulation.  相似文献   

15.
Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.  相似文献   

16.
目的:探讨原子力显微镜(AFM)在研究人脐静脉内皮细胞(ECV304)表面形貌、超微结构及纳米机械性质等方面的应用,讨论ECV304超微结构和机械性质与其功能的关系。方法:利用AFM对ECV304细胞的表面形貌及生物机械性质进行表征与测量。结果:在AFM下观察到用普通光学显微镜难以观察到的ECV304细胞的独特的形态结构,如细胞骨架、伪足及细胞边缘微丝等。ECV304细胞呈现长梭形、多角形、圆形等多种形态,细胞表面平均粗糙度为320.52±75.98 nm,表面均匀分布微绒毛,细胞周围有铺展的圆盘状物质。力曲线定量分析得出针尖与细胞表面的非特异性粘附力为75±14 pN。结论:通过AFM成像和力曲线测量表明,ECV304细胞呈圆形,多角形,梭形等多种形态,针尖与细胞膜表面问的粘附力比较小,约75±14pN。  相似文献   

17.
Lee JH  Kang WS  Choi BS  Choi SW  Kim JH 《Ultramicroscopy》2008,108(10):1163-1167
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir-Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

18.
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

19.
Atomic force microscopy of the erythrocyte membrane skeleton   总被引:9,自引:0,他引:9  
The atomic force microscope was used to examine the cytoplasmic surface of untreated as well as fixed human erythrocyte membranes that had been continuously maintained under aqueous solutions. To assess the effects of drying, some membranes were examined in air. Erythrocytes attached to mica or glass were sheared open with a stream of isotonic buffer, which allowed access to the cytoplasmic membrane face without exposing cells to non‐physiological ionic strength solutions. Under these conditions of examination, the unfixed cytoplasmic membrane face revealed an irregular meshwork that appeared to be a mixture largely of triangular and rectilinear openings with mesh sizes that varied from 35 to 100 nm, although few were at the upper limit. Fixed ghosts were similar, but slightly more contracted. These features represent the membrane skeleton, as when the ghosts were treated to extract spectrin and actin, these meshworks were largely removed. Direct measurements of the thickness of the membrane skeleton and of the lateral dimensions of features in the images suggested that, especially when air dried, spectrin can cluster into large, quite regularly distributed aggregates. Aggregation of cytoskeletal components was also favoured when the cells were attached to a polylysine‐treated substrate. In contrast, the membrane skeletons of cells attached to substrates rendered positively charged by chemical derivatization with a cationic silane were much more resistant to aggregation. As steps were taken to reduce the possibility of change of the skeleton after opening the cells, the aggregates and voids were eliminated, and the observed structures became shorter and thinner. Ghosts treated with Triton X‐100 solutions to remove the bilayer revealed a meshwork having aggregated components resembling those seen in air. These findings support the proposition that the end‐to‐end distance of spectrin tetramers in the cell in the equilibrium state is much shorter than the contour length of the molecule and that substantial rearrangements of the spectrin‐actin network occur when it is expanded by low ionic strength extraction from the cell. This study demonstrates the applicability of AFM for imaging the erythrocyte membrane skeleton at a resolution that appears adequate to identify major components of the membrane skeleton under near‐physiological conditions.  相似文献   

20.
A microlateral force sensor (MLFS) was developed and evaluated using atomic force microscopy (AFM). The sensor was attached to a sensing table supported by a suspension system. The lateral motion of the sensing table was activated by a comb actuator. The driving voltage to the comb actuator was controlled to maintain a constant position of the sensing table by detecting the tunneling current at a detector, which consisted of two electrodes where the bias voltage was applied. An AFM was used to apply a lateral force to the sensing table of the sensor. When the probe of a cantilever was pressed against the sensing table and a raster scanning was conducted, the driving voltage of the comb actuator changed to compensate the friction force between the probe and sensing table. AFM measurements of an asperity array on the sensing table were conducted, and a lateral force microscopy image (LFM) was obtained from the change in driving voltage. The image by MLFS was very similar to the LFM image that was conventionally obtained from torsion of the cantilever. The LFM image strongly correlated with the gradient image calculated from the AFM topographic image. The force sensitivity of the MLFS was determined by comparing the LFM image obtained by using the MLFS with the tangential force derived from the gradient of the AFM image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号