首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了探究微通道内流动沸腾及传热现象的机理,以制冷剂R22为工质在矩形微通道内进行了流动沸腾及可视化实验。结果表明,在核态沸腾下传热系数受质量流率的影响较小,却随着热流密度的增加而快速增加;微通道的尺寸越小,传热效果越好,水力直径为0.92 mm和1.33 mm微通道内的传热系数比2 mm微通道内的传热系数分别提高约25%、12%;根据实验值与预测值的对比情况,在Oh H K等[15]和Yun R等[7]模型基础上拟合得到新的传热系数预测关联式,平均绝对误差降至8.8%;通过可视化实验发现,在临界热流密度下微通道内出现波浪式气体层的现象。  相似文献   

2.
以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用Lockhart-Martinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Leeand Lee,Mishima及Quand Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通道中含气率相对较高时,汽液两相间相互作用随x升高而减小,需采用一随质量流率减小而减小的C值计算式。通过实验提出了基于Mishima公式的C值计算式,用该公式得到的计算值与实验结果符合较好,平均相对误差仅为16.9%。  相似文献   

3.
针对CO2在亚临界管内流动沸腾换热过程中所表现出来的干涸现象研究进展进行了综述,描述了在CO2沸腾换热过程中的干涸现象及其产生的影响因素,分析了热流密度、质量流量、饱和温度、管径等因素对干涸产生的影响及机理.提出CO2流动沸腾换热过程中临界热流密度,流态变化,干涸干度的预测以及抑制干涸提前发生的相应措施是今后研究的方向.  相似文献   

4.
对R134a在水平直管和螺旋管内的沸腾换热特性进行了实验研究.在三个不同的蒸发温度(5℃、10℃和20℃),工质R134a的质量流量范围为100~400kg/(m~2·s)和干度范围为0.1~0.8的条件下,实验得到了R134a在水平直管和螺旋管内的沸腾换热系数随其质量流量和干度的变化关系,将水平直管和螺旋管内的沸腾换热特性数据进行了比较,结果显示,在实验条件下,卧式螺旋管的传热系数比直管的平均增加13.7%.  相似文献   

5.
为研究流体物性、流动和换热过程的状态参量对微通道内沸腾换热特性的影响规律,本文采用去离子水和无水乙醇在当量直径为0.293 mm的矩形微通道进行了不同质量流量和热流密度条件下的沸腾换热实验研究,通过对实验数据的计算和处理,分析总结了流体的热物性、质量流量、热流密度、干度和Bo数等参量对沸腾换热系数的影响规律。结果表明:沸腾换热系数随着热流密度、干度和Bo数的增大而降低,核态沸腾占主导地位;相同的质量流量和热流密度条件下,去离子水的沸腾换热系数明显高于无水乙醇的沸腾换热系数,并且前者的换热系数随质量流量的增大而增大,而后者变化不明显。根据考虑了通道尺寸效应及流体物性参量总结出的换热系数关联式进行了计算,计算结果对去离子水和无水乙醇的平均绝对误差分别为14.2%和16.6%,可认为该关联式适用于微通道内沸腾换热系数的预测。  相似文献   

6.
内微肋管是增强管内凝结与沸腾换热的重要技术之一,在制冷空调领域有着广泛的应用。本文基于对近年文献回顾,从实验和计算关联式两方面综述了微肋管中沸腾换热的研究现状,总结了质量流速、热流密度、干度、管道结构、润滑油等对换热系数和压降的影响,讨论了现有的沸腾换热关联式的适用性和准确性,并指出了需要进一步研究的问题。  相似文献   

7.
在内径为2 mm的水平不锈钢微通道内对R410A的沸腾换热特性进行了实验研究。质量流率为200~600 kg/(m2·s),热流密度的范围为5~15 k W/m2,干度的范围为0.1~0.8,饱和温度为0℃和5℃。结果显示,当干度大于0.5时,随着热流密度的上升,沸腾换热系数显著上升,其平均增幅分别达到了4.6%和7.7%。当干度小于0.5时,热流密度对换热系数的影响十分微弱。随着质量流率的上升,换热系数均出现了小幅上升,其平均增幅也分别达到了1.1%和2%。而饱和温度对换热系数则几乎没有影响。随后,对可能的机理进行了讨论。实验结果又与Choi K I等以及Ebisu T等在内径分别为1.5 mm,3 mm和6.4mm管道内的研究结果进行了比较。结果显示,在相似工况下,随着管径的下降,当干度小于0.5时,换热系数呈现出上升的趋势,其平均增幅分别达到了18.4%,23.6%和19.5%。  相似文献   

8.
孙佳  林宇豪  李蔚 《制冷学报》2023,(6):77-84+117
非均匀润湿表面对流动沸腾过程中的流动模式和传热机制有重要影响。本文以去离子水为工质,实验研究了矩形微通道内硅表面和润湿异质性表面的过冷流动沸腾换热特性。通道横截面为0.5 mm×5 mm,过冷流动沸腾的质量通量分别为300、400 kg/(m2·s),热流密度在30~300 kW/m2的范围内。实验在大气压下进行,过冷度为10 K。对比了与流动方向垂直(HC)和平行(HP)的疏水图案,讨论了不同热流密度、质量通量等工况下的硅表面和润湿异质性表面垂直向上流动沸腾,分析了不同工况下过冷沸腾的沸腾曲线、平均传热系数和两相流流型。结果表明:润湿异质性表面的流动沸腾换热表面传热系数最大提高了39.55%,换热机制主要为核态沸腾。  相似文献   

9.
微机电系统内部存在微尺度流动现象,伴随微机电系统出现的微流量系统目前已广泛应用于气体微流控领域.研究微通道气体流动特性能够为微机械结构设计提供理论指导.在对气体流动尺度划分分析的基础上,阐述了各尺度流动特征及流动模型.重点调研了国内外微直通道和非直通道中充分发展段及进出口区域气体流动阻力特性,并对微尺度流场可视化实验方...  相似文献   

10.
本文对水平细通道内CO_2流动沸腾换热过程中流态及其转变特性进行理论分析和可视化实验研究。根据可视化实验结果,更新了CO_2在低蒸发温度下的理论流动状态预测模型。实验工况为:热流密度(7. 5~30 k W/m2)、质量流率(50~600kg/(m2·s))、饱和温度(-40~0℃)、干度(0~1)、内径(1. 5 mm)。理论分析表明:质量流率对换热过程中经历的流态形式有决定性作用,热流密度对环状流-干涸区域、干涸区域-雾状流边界转变曲线影响较大,饱和温度对流态转变具有重要影响。可视化研究表明:基于理论流态图对于CO_2在细通道内流动沸腾换热的流态能够较好的预测,也能反映不同工况下流态的变化趋势,但理论流态图对干涸区域和雾状流区域预测偏差较大;在实验数据的基础上,增加了液气黏度比的无量纲因子,并提出一种新的临界热流密度预测模型。在考虑质量流率和热流密度影响的情况下,根据更新后临界热流密度预测模型和实验数据,引入沸腾数Bo对理论流态图中环状流-干涸区域、干涸区域-雾状流及间歇流/弹状流-环状流边界转变曲线进行了更新,可视化研究获得的流态数据中89. 4%符合更新后的CO_2理论流态预测模型。  相似文献   

11.
低温工质流动沸腾传热关联式研究综述   总被引:2,自引:0,他引:2  
低温流体流动沸腾是低温系统的常见过程,也是低温系统传热的一个重要方式。文章总结了低温工质流动沸腾传热关联式,对各个关联式进行了简单评价,并选用了一些数据组对各个关联式的平均偏差进行了分析。最后对进一步的关联式研究工作进行了展望。  相似文献   

12.
微尺度下的相变强化传热是微电子领域散热的研究热点,而微通道内气液两相流流型和压降分析是微流动系统设计和控制的基础。本文针对并联矩形突扩微通道,通过流型可视化、理论分析及实验研究的方式,对微通道内两相流动特性进行了分析研究。通过可视化实验,在并联矩形突扩微通道内观察到了4种典型流动,分别为泡状流、塞状流、弹状流和环状流。当Qg=110 m L/min、Ql=20 m L/min时,两相流动流型达到最大程度的射流状态,出现充分流体射流情况。通过建立压降预测模型,结合实验结果分析了压降模型的适用性和精度,结果表明:含有突扩结构的并联矩形微通道在质量流速为367~691 kg/(m2·s)范围内的压降预测模型的平均预测误差为18. 56%,优于经典文献中的预测精度,且随着整体压降的增大,预测精度增大。  相似文献   

13.
The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the analysis of differences between the heat transfer coefficients at normal and at zero gravity, and the study of the effects of mass flux, heat flux, and tube diameter on boiling phenomena at microgravity. Three tube diameters are tested: 6.0, 4.0, and 2.0?mm. With respect to terrestrial gravity, both heat transfer rate enhancement (up to 15?C20%) and deterioration (up to 35%) have been observed. Heat transfer differences for the two gravity conditions may be related to the different bubble size in each of them. The size of a bubble in flow boiling is generally affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heating wall. Heat transfer enhancements at low gravity, are observed in those conditions where the flow pattern is bubbly flow at normal gravity and intermittent flow at low gravity. The results are presented in a flow boiling gravity influence map, which can be considered a useful tool for designing boiling systems for space applications.  相似文献   

14.
15.
混合物流动沸腾传热是一种非常重要的传热方式,在现代工业中有着大量应用.在总结了对单工质和混合物管内流动沸腾传热相关理论和研究成果的基础上,对相关传热预估关联式进行了介绍,指出了现有研究的不足,例如:不适用于低温流体,关联式的适用性和精度不足.为进一步的研究指明了方向.  相似文献   

16.
王金  李俊明 《制冷学报》2020,41(5):29-34
本文建立了制冷剂R1234ze(E)在微圆管内流动沸腾过程中的环状流模型,对传热和气液两相流动压降进行了模拟研究。综合考虑重力、表面张力及气液界面剪切力的影响,模拟分析了周向液膜不均匀分布特性及该特性对流动与换热的影响,经验证,计算结果与已有实验结果吻合较好。本文还研究了不同因素对环状流区域表面传热系数与压降的影响。模拟结果表明:在流动起始区域,截面液膜厚度的分布受重力作用影响,随着流动沸腾过程的进行,该影响作用开始减弱,且有重力作用时的环状流平均表面传热系数高于无重力作用时的环状流平均表面传热系数,随着重力加速度的增加,环状流的平均表面传热系数不断增大;随着质量流速的增大,表面传热系数与压降均随之增大;随着管径增大,表面传热系数与压降均随之减小。  相似文献   

17.
从沸腾换热特性及其影响因素、沸腾汽泡行为和沸腾换热关联式等方面综述了添加表面活性剂的沸腾换热强化研究现状。现有研究指出界面吸附、分子结构、粘度、溶解特性等因素对表面活性剂溶液沸腾换热的作用机制与表面活性剂种类和溶液浓度密切相关,但是蒸汽携带活性剂、非离子活性剂浊点、加热方法、系统压力、参数耦合等因素对表面活性剂溶液沸腾换热的影响规律的研究还需深入开展。在沸腾汽泡行为方面,表面活性剂溶液沸腾汽泡行为与水存在较大差异且与活性剂种类有关,表面活性剂溶液沸腾汽泡行为的理论研究还需加强。此外,现有文献建立的表面活性剂溶液沸腾换热模型及关联式存在验证所用的实验数据较少、模型参数难以确定等不足。最后,在总结现有研究进展的基础上对表面活性剂溶液沸腾换热的后续研究工作提出了建议。  相似文献   

18.
随着航空航天领域的发展采用沸腾换热的高效换热技术越来越受到关注,泡沫金属具有比表面积大、导热系数高的优点,可以强化流动沸腾换热的效果.本文在实验工况为孔密度10~40 PPI,干度0.1~0.9,质流密度90~180 kg/(m2·s),热流密度12.4~18.6 kW/m2的条件下,研究了表面润湿性为未改性和疏水改性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号