首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为明确二元碱度和Al_2O_3对酒钢炉渣冶金性能的影响机理,基于酒钢高炉渣的实际成分,通过粘度实验研究了二元碱度和Al_2O_3对炉渣粘度及熔化性温度的影响。实验结果表明:炉渣粘度随着渣中二元碱度的增大而降低,随着渣中Al_2O_3含量的增加而增大;炉渣的熔化性温度则随着渣中二元碱度和Al_2O_3含量的增加均呈升高的趋势。为保证酒钢炉渣具有良好的流动性,炉渣的二元碱度可控制在1.05~1.10,Al_2O_3含量应控制在8.0%~12.0%。  相似文献   

2.
中性条件下高炉钛渣粘度的研究   总被引:2,自引:1,他引:1  
本文采用较严格的实验方法,研究测定了中性条件下TiO_2-CaO-SiO_2-Al_2O_3-MgO五元渣系的粘度和熔化性温度,细致考察了各组成因素对炉渣性质的影响。实验结果表明,渣中TiO_2和MgO含量增加、碱度((CaO)/(SiO_2))提高,可使炉渣粘度降低,Al_2O_3含量增加可使粘度略有增加。其中,碱度对钛渣性质的影响起主导作用。  相似文献   

3.
根据安阳钢铁公司高炉的原料条件和冶炼情况,实验研究了Al_2O_3、二元碱度(Ca)/SiO_2)、MgO和TiO_2对高炉渣的流动性、粘度、熔化性温度和脱硫性能的影响,为安钢高炉优化造渣制度提供了实验和理论依据。本文为炉渣的物理性质部分。  相似文献   

4.
本文用混料回归设计来进行高炉MgO渣性能的研究。MgO对熔化性温度的影响由Al_2O_3决定。碱度和MgO量的增加,使炉渣熔化性温度升高。对一定的Al_2O_3相应有一最大允许MgO量。CaO和MgO对脱硫效果的置换关系由SiO_2来决定。当SiO_2>41.1%,用MgO代替CaO,L_s增大,反之则不然。高炉合适MgO渣可根据高A1_2O_3、高MgO,高Al_2O_3、低MgO,低Al_2O_3、高MgO等生产条件配合选定。  相似文献   

5.
以高炉渣为主要原料,配入Ca(OH)_2、SiO_2、Al_2O_3和TiO_2化学试剂调整炉渣的组成,应用炉渣熔化特性测试仪半球点法,研究了含Al_2O_3 14.6%~17.6%、TiO_2 5%~7%高炉渣的熔化特性。结果表明:随着碱度的升高,炉渣的熔化性温度明显升高;TiO_2含量增加,炉渣的熔化性温度相应降低;适当提高渣中MgO的含量,可避免因Al_2O_3含量升高而引起的熔化性温度上升;炉渣的熔化性温度为1320~1420℃,熔化性良好。  相似文献   

6.
一、前言包钢炉渣在高炉冶炼中呈现的很多特点,其根源在于含氟炉渣的特性。以前对含氟炉渣性能曾做过一些测定研究工作,但缺乏较完整的数据。为此我们计划对含氟炉渣进行较系统的测定和研究。炉渣粘度和熔化温度是冶金工作者十分注意的物化性能。本文是对CaO—MgO-SiO_2—Al_2O_3—CaF_2五元系合成含氟炉渣进行粘度、熔化温度测量结果的介绍。绘制出了不同Al_2O_3和MgO含量下的CaO—SiO_2—CaF_2三元系部分区域的等粘度图,讨论了碱度、氟  相似文献   

7.
中钛型高炉渣冶金性能的研究   总被引:6,自引:0,他引:6  
论文系统地研究了中钛型高渣的粘度、熔化性温度、稳定性和脱硫性能等方面的冶金性能;研究表明,中钛型炉渣是一种有一定稳定性和脱硫能力的炉渣。  相似文献   

8.
高炉高铝炉渣性能研究   总被引:2,自引:0,他引:2  
通过高炉现场取样和实验室配制渣样,研究了炉渣中Al2O3、MgO、R(2CaO/SiO2)、R(4(CaO MgO)(/SiO2 Al2O3))等对炉渣性能的综合影响。结果表明,随着高炉终渣Al2O3含量的提高,炉渣的熔化性温度上升、高温粘度增大、热稳定性变差、脱硫能力下降。较高的MgO含量与高的四元碱度R4可降低炉渣高温粘度、降低熔化性温度、拓宽高温低粘度区,提高炉渣脱硫能力。根据原料情况,马钢高炉炉渣Al2O3可达到17%左右,为马钢高配比使用外购高铝矿提供了依据。  相似文献   

9.
通过对攀钢转炉渣及合成渣的熔化温度、粘度和矿物结构的研究表明,V_2O_5可显著降低炉渣的熔化温度和粘度,钒在渣中与CaO形成低熔点的钒酸钙.因此可以认为,V_2O_5对炉渣起着稀释剂作用,但这种稀释作用是以消耗自由CaO为代价的,这便是在攀钢转炉吹炼过程中要加大量石灰造高碱度渣脱硫的原因.在碱性渣中钒以多价形式存在,首先以5价态与CaO生成钒酸钙,随着碱度降低到1.5和V_2O_5增加到20%时,渣中还同时出现3价态的钒尖晶石.  相似文献   

10.
针对国内高炉炼铁原料中Al_2O_3含量不断提高和高炉炉渣中(MgO)/(Al_2O_3)偏高的情况,通过相图分析和对比高(MgO)/(Al_2O_3)和低(MgO)/(Al_2O_3)渣的炉渣粘度和熔化性温度,提出了当高炉采用低(MgO)/(Al_2O_3)渣制度时应采取的冶炼措施。分析表明,炉渣中MgO含量低时,可以通过适当提高二元碱度和炉渣过热度的方法保证炉渣的流动性,但二元碱度不易超过1.25,否则炉渣熔化性温度超过1 380℃,高炉操作抗波动能力下降。  相似文献   

11.
以FeO-Fe_2O_3-SiO_2-CaO-ZnO-PbO渣系为研究对象,采用热力学软件FactSage计算温度、Fe/SiO_2(质量比)、CaO/SiO_2(质量比)、ZnO含量及PbO含量等因素对炉渣熔化温度及液相生成区的影响。热力学分析表明,随着Fe/SiO_2的增大,炉渣熔化温度减小,随着CaO/SiO_2的提升呈先减小后增大的趋势。炉渣中ZnO含量在10%~18%变化时,炉渣的熔化温度变化较大。随着ZnO含量的增加,炉渣的液相区有所减小,当渣中ZnO含量低于12%时,可保证还原熔炼的顺利进行。验证试验表明,在熔炼温度1 200~1 250℃、CaO/SiO_2=0.5、Fe/SiO_2=0.9、ZnO含量12%的条件下,采用侧吹还原熔炼处理液态高铅渣可顺利进行,熔炼过程金属直收率为85%,渣中铅含量为2.06%。  相似文献   

12.
通过对南钢高炉生产渣样的现场统计和实验室研究,探讨了南钢高炉渣的熔化性、流动性和脱硫能力。针对南钢高炉渣实际脱硫系数较低,确定南钢高炉渣的适宜组成是(CaO/SiO_2)1.07,(MgO)10%及(Al_2O_3)10%。  相似文献   

13.
锰硅合金冶炼采用高Al2O3炉渣的研究   总被引:1,自引:0,他引:1  
孙社成  隆进 《铁合金》1992,(5):8-13
本文介绍了上海铁合金厂冶炼锰硅合金的渣型,并通过大量生产数据的统计分析,探讨了渣中 MnO 含量与炉渣碱度、Al_2O_3含量等因素间的关系。实测了炉渣的熔点、熔化速度和粘度。提出了冶炼锰硅合金的高 Al_2O_3炉渣的渣型是:CaO 23—27%、MgO 6—8%、SiO_2 33—37%、Al_2O_3 18—21%、三元碱度(CaO+MgO)/SiO_2 0.7—0.9、含氟2—3%。  相似文献   

14.
本文介绍加硼镁铁矿冶炼铸造铁试验。试验前期在试验室进行,用加硼镁铁矿的精矿粉和球团矿在硅化钼棒高温炉做熔融测试,冷却后做渣铁分析。试验认为在原料含 B_2O_3不超过1%时,可以在高炉进行加硼镁铁矿工业试验;试验后期在1070m~3高炉加硼镁铁矿15.4kg/t_铁和23.9kg/t_铁分别进行直接入炉冶炼试验。文中分析了含 B_2O_3炉渣的矿物组成及其熔化温度和粘度,介绍了试验期的操作技术措施,探讨了硼与生铁质量的关系。结论表明加硼镁铁矿直接入炉冶炼铸造铁,炉渣的 B_2O_3含量控制在0.6%以内,能改善炉渣的理化性能和脱硫能力,提高生铁质量和产量,取得较好的经济效益。  相似文献   

15.
邯 钢 高 炉 渣 的 熔 化 性 能   总被引:1,自引:0,他引:1  
 根据邯钢目前高炉的冶炼条件,以现场渣为基准,研究了炉渣碱度、MgO、Al2O3和TiO2含量对炉渣熔化性能的影响。结果表明,随碱度增加,炉渣粘度和熔化性温度先下降后提高。较高的MgO含量可降低炉渣粘度和熔化性温度,提高炉渣流动性。随渣中Al2O3含量增加,炉渣流动性变差。渣中TiO2含量对炉渣粘度和熔化性温度影响不明显。本试验条件下,合理的炉渣组成为:二元碱度为110~115,MgO含量为1119%左右,Al2O3含量为1439%左右,TiO2含量可根据现场原料变化情况而定。  相似文献   

16.
以现场高炉渣为基样,应用半球点法和内柱体旋转法测定CaO-SiO_2-Al_2O_3-TiO_2-MgO五元渣系的熔化温度和黏度,研究高铝低钛渣中Al_2O_3和TiO_2含量对炉渣流动性的影响。实验结果表明:随渣中Al_2O_3含量增加,炉渣的熔化性温度和黏度上升;TiO_2含量增加,炉渣的熔化性温度和黏度下降,适当添加TiO_2可避免渣中Al_2O_3含量增加引起的炉渣流动性变差;渣中矿物组成黄长石和玻璃质的数量随TiO_2含量增加而降低。  相似文献   

17.
杭钢炉渣属短渣型,其自由流动温度为1320~1325℃,并与实际渣温相差100~150℃,较能经受炉温波动。渣中MgO,Al_2O_3对自由流动温度影响显著,而CaO/SiO_2甚微。1400℃时CaO/SiO_2,Al_2O_3MgO对粘度影响大,1500℃时前两者的作用变得很小。故渣温较低时,为使炉渣有足够的流动性,低Al_2O_3、低MgO或低碱度操作是不适宜的。杭钢条件下,炉渣的主要职能是稳定炉况、保证脱硫。抑制炉内硅的迁移过程主要靠其它措施,其中包括提高终渣碱度,使中间渣吸收SiO的能力增强。降低铁水含硅量主要受渣温降低、脱硫变差的制约。  相似文献   

18.
脆硫铅锑精矿富氧直接熔炼过程炉渣的熔化温度对熔炼过程的顺行高产具有重要影响。以FeO-SiO_2-CaO-ZnO-5%Al_2O_3渣系为研究对象,采用热力学软件FactSage计算并绘制了该渣系相图,探讨了温度、 Fe/SiO_2(质量比)、 CaO/SiO_2(质量比)及ZnO含量对炉渣熔化温度的作用规律。研究结果表明:升高温度可以显著增大炉渣的液相区,炉渣的熔化温度随Fe/SiO_2和CaO/SiO_2的增大而升高,且Fe/SiO_2对炉渣熔化温度的影响较CaO/SiO_2大。在Fe/SiO_2 1.1, CaO/SiO_2 0.6条件下,炉渣中ZnO含量在8%~16%范围内变化对炉渣的熔化温度影响较小,炉渣液相区随ZnO含量的升高而逐渐减小,在保证熔渣流动性较好的前提下,炉渣中ZnO的含量可控制在10%~12%。根据热力学分析结果,开展了验证试验,结果表明:在熔炼温度1250℃, CaO/SiO_2 0.6, Fe/SiO_2 1.1条件下,熔炼过程熔渣具有较好的流动性,合金直收率达到45.56%,渣中金属含量(Pb+Sb)为1.75%,渣中ZnO含量为11.91%。  相似文献   

19.
本文采用Factsage软件的Phase Diagram模块对艾萨炼铜工艺电炉渣体系的初始熔化温度和完全熔化温度进行计算,同时分析了炉渣各组分对于熔化温度的影响规律。研究结果表明:电炉渣的完全熔化温度随着Al_2O_3、Fe_3O_4含量的升高迅速上升,CaO、SiO_2的含量对于熔化温度的影响不大;FeO含量的升高会使熔化温度大幅降低,通过采取一定的措施促进电炉渣中Fe_3O_4转变成FeO,可以显著降低熔化温度。实际生产中需要控制Al_2O_3的含量低于4.5%、Fe_3O_4的含量低于8%、MgO的含量低于4%,从而可确保电炉渣在操作温度下完全熔化。  相似文献   

20.
高炉钛渣高温还原变粘规律   总被引:4,自引:1,他引:3  
以攀钢高炉现行生产渣为基准,配制TiO_2-CaO-SiO_2-Al_2O_3-MgO五元渣系,比较系统地研究了钛渣还原变粘过程。结果表明,还原过程中钛渣熔化性温度的变化不是粘度增大的直接原因。实验发现,与粘度显著增大相对应的是渣中有一定数量的TiC,同时还有相当数量的TiO。TiC并非是钛渣变粘的唯一因素。试验结果充分证明:碱度CaO/SiO_2对钛渣还原变粘特性影响很大,在组成因素中起主导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号