首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most important factors for examining the quality of soybeans in the animal feed industry are moisture and urease inactivation. Mathematical models for soybean drying and urease inactivation using two-dimensional spouted bed are developed and validated with experimental data. The influences of initial moisture content, inlet air temperature, air recycle on the drying rate, urease inactivation, and energy consumption are also studied. The results revealed that the increase in initial moisture content slightly affected the drying rate and urease inactivation while the inlet air temperature caused a significant effect. To obtain a high drying rate and save energy consumption, the recycle air ratio should be kept in a range of 80–90%.  相似文献   

2.
《Drying Technology》2013,31(9):1735-1757
Abstract

Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used.  相似文献   

3.
Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used.  相似文献   

4.
In this study, grain drying in a spherical-based spouted bed (SBSB), a cone-based spouted bed (CBSB), and a paraboloid-based spouted bed (PBSB) with and without draft tube was investigated. Spouted-bed bases with the same volume in different shapes—spherical, cone, and paraboloid—were used for the drying experiments to investigate the effect of the spouted-bed base shape on drying. The drying experiments were carried out with perforated and solid draft tubes. The effects of the distance between the gas inlet nozzle and the bottom of the draft tube (entrainment zone height) and the draft tube diameter as geometric parameters on drying were also investigated. It was seen that the geometrical shape of the contactor base influenced the drying time. The highest drying rate was achieved for drying in a paraboloid-based spouted bed. The results also showed that using a draft tube caused a significant increase in drying time. Because the perforated draft tube allows a higher gas flow rate through the annulus, it decreases the drying time when compared with the solid draft tube. Drying time decreased slightly with the decreasing height of the entrainment zone but draft tube diameter did not have a considerable effect on drying.  相似文献   

5.
ABSTRACT

A mathematical model is developed to predict the performance of single-stage and multi-stage drying systems using spouted beds. The model uses unsteady state analysis for batch operation to simulate the steady state operation of a continuously fed spouted bed. A parametric study is carried out to study the effect of the following parameters on the performance of a single-stage grain drying system: air flow rate per unit mass of the grain in the bed, ambient air temperature and humidity, initial and target moisture contents, the residence time in the bed, and the effectiveness of the heat exchanger to recover the thermal energy in the exhaust air. The parametric study is also extended to investigate the effect of these parameters (except ambient air temperature and humidity) on the performance of the multi-stage system. In addition, the number of stages is also included in the latter study. The results are presented in terms of charts which may be adopted for the design of such systems.  相似文献   

6.
A multiple porous draft tube spouted bed (MPDTSB) was used to carry out drying of Ragi (Eleusine coracana), Barley, and Wheat grains. Batch experiments were conducted under varied conditions of initial moisture contents of grains, air inlet temperatures, and airflow rates. The draft tube parameters and fluid inlet sizes were also varied in the study. The results indicated that MPDTSB has the potential to be used for scale up to large-scale solids drying. In addition, two single porous draft tube spouted beds (SPDTSBs) were used for comparison with MPDTSB; the batch drying times in the MPDTSB were found to be lower when compared to those in SPDTSB under identical operating conditions.  相似文献   

7.
Microwave-assisted spouted bed (MSBD) drying of lettuce cubes was investigated experimentally. Response surface methodology was used to optimize the process with spouting air temperature, microwave power level, and superficial air velocity. The dried product obtained was compared with that obtained using other drying technologies such as hot air drying, air spouted bed drying, vacuum microwave drying, and vacuum freeze drying. The comparison is based on the rehydration ratio, chlorophyll content of the product, color, and the drying time required.  相似文献   

8.
9.
10.
A mathematical model is developed to predict the performance of single-stage and multi-stage drying systems using spouted beds. The model uses unsteady state analysis for batch operation to simulate the steady state operation of a continuously fed spouted bed. A parametric study is carried out to study the effect of the following parameters on the performance of a single-stage grain drying system: air flow rate per unit mass of the grain in the bed, ambient air temperature and humidity, initial and target moisture contents, the residence time in the bed, and the effectiveness of the heat exchanger to recover the thermal energy in the exhaust air. The parametric study is also extended to investigate the effect of these parameters (except ambient air temperature and humidity) on the performance of the multi-stage system. In addition, the number of stages is also included in the latter study. The results are presented in terms of charts which may be adopted for the design of such systems.  相似文献   

11.
In this work, a model based on population balance equations applied to perfect mixture domains has been employed to represent the coating of soybeans with fertilizer in a conical–cylindrical spouted bed. The results of the present model provided explicit equations for the coating mean and variance. The coating mass distribution function was validated against experimental data. The effect of operational time on the distributions was analyzed, showing that the coating uniformity can be improved by increasing the operating time.  相似文献   

12.
ABSTRACT

The continuously operated Mechanically Spouted Bed (MSB) dryer of high evaporative capacity can be advantageously used to produce fine powder from paste-like materials, slurries, suspensions and sludges. Due to the thin layer formed on the surface of the spherical inert particles intensive heat and mass transfer occur and the drying process takes place in the constant rate period. Steady state drying conditions can be achieved when the total operational time of partial processes of inert bed drying does not exceed the cycle time of the inert particles.

A laboratory scale MSB dryer has been equipped with a computerised measuring, data acquisition and control system. In the knowledge of the hydrodynamic characteristics of the MSB and giving the enthalpy and mass balances over the dryer a calculation method has been developed for control of drying process.  相似文献   

13.
14.
A draft tube spouted bed dryer with inert particles was used for drying suspensions. The effects of the operating conditions on dryer throughput and product quality were investigated. Experiments were performed in a cylindrical column 215 mm in diameter with a draft tube 70 mm in diameter and 900 mm in length. The bed was made of polyethylene particles, 3.3 mm in diameter with a density of 921 kg/m3. The fungicide Zineb, calcium carbonate, calcium stearate and pure water were used as feeding materials. A drying model using the continuity and momentum equations for turbulent accelerating two‐phase flows and conventional rate equations is proposed and discussed. The work is relevant for estimating dryer performance.  相似文献   

15.
ABSTRACT

he performance of a laboratory scale jet spouted bed (JSB) for drying rice flour slurry was studied. The bed consisted of ceramic balls (5028 mm diameter) and the rice flour slurry was sprayed onto the moving particle surface near the inlet part. All the experiments were carried out at the jet spouting regime. This regime has high bed void fraction and violent movement and collision of bed particles. As a result, the dried product layer is attrited from particle surface as a fine powder and entrained from the bed by the spouting air. The experimental result were presented to show the effects of static bed height, inlet air flow rate and temperature, and feed concentration and flow rate on the outlet air temperature, thernal efficiency, and mean particle size and moisture content of the product. Asimple mathematical model, which is based on the conservation of mass and energy equations, was developed. Predicted results agreed well with those obtained from the experiment.  相似文献   

16.
Gas-particle flow behavior in a spouted bed of spherical particles was simulated using the Eulerian-Eulerian two-fluid modeling approach, incorporating a kinetic-frictional constitutive model for dense assemblies of the particulate solid. The interaction between gas and particles was modeled using the Gidaspow drag model and the predicted hydrodynamics is compared with published experimental data. To investigate drying characteristics of particulate solids in axisymmetric spouted beds, a heat and mass transfer model was developed and incorporated into the commercial computational fluid dynamics (CFD) code FLUENT 6.2. The kinetics of drying was described using the classical and diffusional models for surface drying and internal moisture drying, respectively. The overall flow patterns within the spouted bed were predicted well by the model; i.e., a stable spout region, a fountain region, and an annular downcomer region were obtained. Calculated particle velocities and concentrations in the axisymmetric spouted bed were in reasonable agreement with the experimental data of He et al. (Can. J. Chem. Eng. 1994a, 72:229; 1994b, 72:561). Such predictions can provide important information on the flow field, temperature, and species distributions inside the spouted bed for process design and scale-up.  相似文献   

17.
The purpose of the present work is to study the simultaneous heat and mass transfer between air and soybean seeds in a concurrent moving bed dryer, based on the application of a two-phase model to the drying process. The numerical solution of the model is obtained by using a computational code based on BDF methods (Backwards Differentials Formulas). The experimental data of air humidity and temperature and of seed moisture content and temperature at the dryer outlet are compared to the simulated values, showing a good agreement. This work also analyzes the effect of the main process variables (drying air temperature, air relative humidity, air velocity and solids flow rate) on the soybean seeds quality during drying. Empirical equations fitted to the experimental data are proposed for predicting the soybean seed quality (germination, vigor and fissures) as a function of the investigated variables.  相似文献   

18.
ABSTRACT

Based on Liquid diffusion model a two-dimensional finite element simulator was developed for the drying of wheat. Simulations were carried out for the drying of a single wheat particle in a novel rotating jet spouted bed. The effects of the choice of the geometric model for the wheat kernel, the temperature and flow rate of the drying air on the moisture removal rate as well as kernel temperature were investigated. Numerical experiments showed that the accuracy of the model geometry chosen has great influence on the computed moisture removal rate partly because of the way the moisture published diffusivily correlations were obtained. Sample results are presented and discussed.  相似文献   

19.
This article presents experimental results for spouted bed drying of sawdust, carried out in a full-scale as well as in a laboratory-scale dryer using air as well as steam as drying media. The aim is to present design parameters for a spouted-bed sawdust dryer that can be used by the industry in designing full-scale dryers. A hydrodynamically stable spouted jet spouted bed was obtained. The heat transfer characteristics of the bed were represented in terms of a volumetric heat transfer coefficient (VHC). When sawdust is dried in a spouted bed, the mean VHC is increasing up to fiber saturation level (20-25% wb) from 40 to 110 W/m3 K. The VHC decreases with the residence time and with an increased static bed height. Gas temperature profiles are also presented for the bottom part of the drying chamber.  相似文献   

20.
The drying homogeneity of the microwave–pulsed spouted bed drying (MPSBD) method was studied via preparing tubers granules by MPSBD under different predefined conditions. The effects of three parameters (microwave power, moisture content transition point, and loading) on the homogeneity of prepared tubers granules were studied. Based on response surface analysis results, it was concluded that the optimum conditions for tuber granules prepared by MPSBD method is 1.10 W/g microwave power, 80% moisture content transition point, and 90 g material loading. It was proven that the experimental result from the predicted optimal condition agreed with the model-predicted results, which evidenced the accuracy of the response surface analysis. Furthermore, the brighter color and higher rehydration capacity of samples prepared by MPSBD indicates that MPSBD is a promising method that can be applied in the food dehydration industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号