首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of adding Lactobacillus buchneri to silages from 43 experiments in 23 sources reporting standard errors were summarized using meta-analysis. The effects of inoculation were summarized by type of crop (corn or grass and small grains) and the treatments were classified into the following categories: 1) untreated silage with nothing applied (LB0), 2) silage treated with L. buchneri at ≤100,000 cfu/g of fresh forage (LB1), and 3) silage treated with L. buchneri at > 100,000 cfu/g (LB2). In both types of crops, inoculation with L. buchneri decreased concentrations of lactic acid, and this response was dose-dependent in corn but not in grass and small-grain silages. Treatment with L. buchneri markedly increased the concentrations of acetic acid in both crops in a dose-dependent manner. The numbers of yeasts were lower in silages treated with LB1 and further decreased in silages treated with LB2 compared with untreated silages. Untreated corn silage spoiled after 25 h of exposure to air but corn silage treated with LB1 did not spoil until 35 h, and this stability was further enhanced to 503 h with LB2. In grass and small-grain silages, yeasts were nearly undetectable; however, inoculation improved aerobic stability in a dose-dependent manner (206, 226, and 245 h for LB0, LB1, and LB2, respectively). The recovery of DM after ensiling was lower for LB2 (94.5%) when compared with LB0 (95.5%) in corn silage and was lower for both LB1 (94.8%) and LB2 (95.3%) when compared with LB0 (96.6%) in grass and small-grain silages.  相似文献   

2.
The production of antifungal compounds during fermentation could be a useful mechanism to improve the aerobic stability of fermented feeds when they are exposed to air. High moisture corn (26% moisture) was ground and inoculated with various amounts of Lactobacillus buchneri 40788, a heterolactic acid bacteria, and ensiled in laboratory silos. Inoculation with L. buchneri 40788 from 1 x 10(5) to 1 x 10(6) cfu/g of corn had minor effects on the end products of fermentation during the early stage of ensiling (< or = 14 d). However, after 49, 92, and 166 d of ensiling, increasing the application rate of L. buchneri 40788 applied to corn increased the concentration of acetic acid when compared to untreated corn. Addition of L. buchneri 40788 had few other effects on the end products of fermentation. Dry matter recovery and aerobic stability were measured after 92 and 166 d of ensiling. At these times, dry matter recovery was not different among treatments, and numbers of yeasts and molds tended to decrease as the application rate of L. buchneri 40788 increased. Aerobic stability (number of h prior to a 2 degrees C rise in temperature after exposure to air) was markedly improved by the addition > or = 5 x 10(5) cfu/g of L. buchneri 40788. Combining L. buchneri 40788 with L. plantarum did not impart better aerobic stability than when L. buchneri 40788 was applied alone to corn. Addition of L. buchneri 40788 did not affect the rate of fermentation in high moisture corn, but after prolonged storage higher application rates increased production of acetic acid and markedly improved aerobic stability.  相似文献   

3.
Lactobacillus buchneri 40788 and enzymes (beta-glucanase, alpha-amylase, xylanase, and galactomannase) were applied to chopped alfalfa (39% DM) to study their effects on the fermentation and nutritive value of the silage. Alfalfa was treated with nothing, or L. buchneri 40788, for a final application rate of 1 x 10(5), 5 x 10(5), or 1 x 10(6) cfu/g of fresh forage and ensiled in laboratory silos for 2, 4, 8, and 56 d. Treatment with L. buchneri 40788 had few effects on the end products of fermentation through 8 d of ensiling. However, after 56 d of ensiling, treated silages had a higher pH (4.55 vs. 4.38) and higher concentrations of acetic acid (6.40 vs. 4.24%), propionic acid (0.18 vs. 0.06%), and ammonia-N (0.35 vs. 0.29%) when compared to untreated silage. Lactic acid was also numerically lower in treated (3.51%) than untreated (4.12%). Silages treated with the moderate and highest dose of L. buchneri 40788 also resulted in greater recoveries of DM than did untreated silage. Alfalfa (43% DM) was also untreated or treated with a commercial application of L. buchneri 40788 (4 x 10(5) cfu/g, a commercial dose) in farm-scale bag silo. Holstein cows were fed a diet comprised of 32% untreated or treated alfalfa silage, 11% corn silage, 5% chopped alfalfa hay, and 52% of concentrate (DMB) for a 6-wk treatment period. Dry matter intake and milk composition were unaffected by treatment, but cows fed silage treated with L. buchneri 40788 produced 0.8 kg more milk than did cows fed untreated silage. Treated silage had a higher concentration of acetic acid (5.67 vs. 3.35%) but lower lactic acid (3.50 vs. 4.39%) than untreated silage. When exposed to air, the total mixed ration containing treated alfalfa silage remained stable for 100 h, whereas the ration containing untreated silage spoiled after 68 h. Treating alfalfa silage with L. buchneri 40788 increased the concentration of acetic acid, and when the silage was combined into a total mixed ration and fed to lactating cows, it improved the aerobic stability of the ration and increased milk production.  相似文献   

4.
This study determined the efficacy of the use of 2 commercial inoculants containing Lactobacillus buchneri alone or in combination with homofermentative lactic acid bacteria in improving aerobic stability of corn silage stored in commercial farm silos in northern Italy. In the first survey, samples were collected from 10 farms that did not inoculate their silages and from 10 farms that applied a Pioneer 11A44 inoculant (L. buchneri strain LN4637; Pioneer Hi-Bred International, Des Moines, IA). In the second survey, corn silage samples were collected from 11 farms that did not inoculate their silages and from 11 farms that applied a Pioneer 11CFT inoculant (L. buchneri strain LN40177; Pioneer Hi-Bred International). Inoculants were applied directly through self-propelled forage harvesters, at the recommended rate of 1 g/t of fresh forage, to achieve a final application rate of 1.0 × 105 cfu/g of L. buchneri. One corn bunker silo, which had been open for at least 10 d, was examined in detail on each farm. The silages inoculated with L. buchneri had lower concentrations of lactic acid, a lower lactic-to-acetic acid ratio, a lower yeast count, and higher aerobic stability compared with the untreated silages. Unexpectedly, concentrations of acetic acid and 1,2-propanediol, 2 hallmarks of L. buchneri activity, did not differ between treatments and were only numerically higher in the inoculated silages compared with untreated ones, in both surveys. Aerobic stability, on average, was 107 and 121 h in the inoculated silages and 64 and 74 h in the untreated silages, for surveys 1 and 2, respectively, and decreased exponentially as the yeast count in the silage at the time of sampling increased, regardless of treatment. Inoculation with L. buchneri proved to be effective in reducing the yeast count to <2 log cfu/g of silage in 16 of 21 of the studied farm silages, confirming the ability of this inoculum to enhance the aerobic stability of corn silages in farm bunker silos.  相似文献   

5.
Experiments were conducted to evaluate the effects of inoculating high-moisture corn (HMC) with Lactobacillus buchneri40788 on silage fermentation and aerobic stability. In the first experiment, HMC (73% DM) was ground and treated with nothing, L. buchneri40788 to achieve 6.6 × 105 cfu/g of HMC (LB), a mixture of enzymes (ENZ), LB + ENZ, or 0.1% (wet weight basis) of a liquid mold inhibitor and was ensiled in 20-L bucket silos for 90 d. Treatments with LB and LB + ENZ increased the concentrations of acetic acid and improved the aerobic stability of ground HMC relative to other treatments. Treatment ENZ had no effect on the chemical composition or aerobic stability of ground HMC. The only effect of the liquid mold inhibitor relative to untreated HMC was that it increased the concentration of propionic acid, but this did not improve its aerobic stability. In a second experiment, HMC (75% DM) was harvested as the intact, whole grain and treated with nothing, L. buchneri40788 to achieve 4 × 105 cfu/g of HMC, L. buchneri40788 to achieve 6 × 105 cfu/g of HMC, or L. buchneri40788 to achieve 8 × 105 cfu/g of HMC and ensiled for 120 d. Treatments with L. buchneri40788 resulted in whole HMC with lower concentrations of water-soluble carbohydrates; higher concentrations of lactic, acetic, and propionic acids; and greater numbers of lactic acid bacteria but fewer molds when compared with untreated corn. As a group, inoculated silages were more aerobically stable than untreated silage, but increasing levels of application did not further improve the response. These experiments showed that addition of L. buchneri40788, but not addition of an enzyme mixture or a liquid mold inhibitor, improved the aerobic stability of ground and whole HMC harvested between 73 and 75% DM.  相似文献   

6.
The effect of inoculating whole-plant corn at the time of harvest with Lactobacillus buchneri 40788 (4 × 105 cfu/g of fresh forage) combined with Pediococcus pentosaceus R1094 (1 × 105 cfu/g) on the fermentation and aerobic stability of corn silage (37% dry matter) through 361 d of ensiling was investigated. Dry matter recovery was similar between treatments throughout the study except at one early time point (14 d), when treated silage had a lower recovery than untreated silage. The concentration of lactic acid was unaffected by inoculation but inoculated silages had greater concentrations of 1,2-propanediol and acetic acid from 56 to 361 d of storage. In general, inoculation decreased the concentration of water-soluble carbohydrates but increased the concentration of ethanol. The numbers of yeasts was lower in inoculated silage at 42, 56, 70, and 282 d of ensiling. However, inoculation did not consistently improve the aerobic stability of silage, suggesting that microbes other than yeasts may have been responsible for aerobic instability in this study. Even after prolonged storage (361 d), silage treated with L. buchneri 40788 and P. pentosaceus R1094 had normal silage fermentation characteristics.  相似文献   

7.
In 2 consecutive years, whole plant corn was ensiled in laboratory silos to investigate the effects of various silage additives on fermentation, dry matter (DM) recovery and aerobic stability. In yr 1, chopped forage was treated with 1) no additive (untreated, U), 2) Lactobacillus buchneri40788, 4 × 105 cfu/g of fresh forage (LLB4), 3) L. buchneri 11A44, 1 × 105 cfu/g (PLB), 4) Biomax 5 (Lactobacillus plantarum PA-28 and K-270), 1 × 105 cfu/g (B5), 5) Silo Guard II (sodium metabisulfite and amylase), 0.05% of fresh forage weight (SG), 6) a buffered propionic acid-based additive, 0.1% (Ki-112), 7), sodium benzoate, 0.1% of fresh weight (SB), or 8) potassium sorbate:EDTA (1:1), 0.1% of fresh weight (PSE). Silage treated with LLB4 had the highest concentration of acetic acid compared with other treatments, and yeasts were undetectable in LLB4 (<log2 cfu/g). Silages treated with SB and PSE had the highest concentrations of water-soluble carbohydrates, the greatest recoveries of DM, and the lowest concentrations of ethanol. Silages treated with B5, SG, and Ki-112 had no effects on fermentation, DM recovery, or aerobic stability. The aerobic stabilities of silages treated with LLB4, SB, and PSE were greatest among all treatments. In yr 2, treatments were: 1) U, 2) LLB4, 3) PLB, 4) PLB at 4 × 105 cfu/g (PLB4), and 5) B5. Silages treated with L. buchneri had greater concentrations of acetic acid but lower concentrations of ethanol than did U- and B5-treated silages. Yeasts were undetected in all silages except in silage treated with B5, which had the poorest aerobic stability of all treatments. Treatments had no effect on DM recovery. Silages treated with PLB, PLB4, and LLB4 remained stable for >210 h.  相似文献   

8.
This study determined how the fermentation and aerobic stability of corn silage are affected by treatment with molasses or 2 dual-purpose inoculants applied at or above the recommended rate. Corn forage (DeKalb 69-70) was harvested at 39% dry matter (DM) and ensiled after treatment with no additives (control, CON), molasses (MOL), Buchneri 500 inoculant, or Pioneer 11C33 inoculant. Molasses was applied at 3% of forage DM. Buchneri 500 was applied at the recommended rate of 8 mg/kg fresh forage to supply 1 × 105 cfu/g of Pediococcus pentosaceus 12455 and 4 × 105 cfu/g of Lactobacillus buchneri 40788 (BB) or at twice the recommended rate (DBB). Pioneer 11C33 inoculant was applied at the recommended rate of 1.1 mg/kg fresh forage to supply 1 × 105 cfu/g of a mixture of Lactobacillus plantarum, L. buchneri, and Enteroccocus faecium (PN) or at twice the recommended rate (DPN). Each treatment was applied in quadruplicate and the treated forages were ensiled within 20-L mini silos for 135 d at 18 to 35°C. Molasses-treated silages had greater ash and starch concentrations than CON silages and greater lactate and ethanol concentrations than other silages. Like CON silages, MOL silages had high yeast counts (>105 cfu/g); consequently, they deteriorated within 30 h as shown by temperature increase. Inoculant-treated silages had lower lactate to acetate ratios than CON or MOL silages largely because they had greater acetate concentrations. Consequently, all inoculant-treated silages had fewer yeasts (<105 cfu/g) and were more stable (>30 h) than CON and MOL silages. When applied at recommended rates, PN and BB had similar effects on silage chemical composition, fermentation, fungal counts, and aerobic stability, except for a lower lactate concentration in PN silages. Concentrations of VFA, and NH3-N, pH, and extent of aerobic stability were similar for PN, DPN, BB, and DBB silages. However, lactate concentration was greater in DPN than in PN. In conclusion, MOL application increased ethanol and lactate concentration and did not improve aerobic stability. Both dual-purpose inoculants made the fermentation more heterolactic and thereby improved the aerobic stability of corn silage. Doubling the rate of application of either inoculant did not further improve fermentation or aerobic stability.  相似文献   

9.
10.
Whole-plant corn (31 to 39% dry matter) from several locations was chopped, treated with nothing (U), Lactobacillus buchneri 40788 (4 × 105 cfu/g; LB), or L. buchneri (4 × 105 cfu/g) and Pediococcus pentosaceus (1 × 105 cfu/g; LBPP), and packed into quadruplicate 20-L silos to determine their effects on silage fermentation and aerobic stability after 120 d of storage. The experiment was a randomized complete block design with main effects of treatment (T), block (location; L), and T × L interaction. Dry matter recovery was different among locations but unaffected by T. The population of lactic acid bacteria was greater in LB and LBPP than in U, and the opposite was true regarding the population of yeasts. Numbers of L. buchneri (colony-forming unit equivalents), determined by a real-time quantitative polymerase chain reaction, were higher in 4 of 5 locations for LB and LBPP compared with U (T × L interaction) with an average 6.70 log cfu/g for LB and LBPP versus 4.87 log cfu/g for U. Silages inoculated with LB and LBPP had higher silage pH and higher concentrations of acetic acid and 1,2 propanediol but lower concentrations of ethanol and water-soluble carbohydrates; there was a T × L interaction for all these variables. Aerobic stability was improved by LB and LBPP (mean of 136 h) compared with U (44 h), but there was an interaction between T × L. In general, locations with the highest population of L. buchneri had the largest increases in acetic acid and, consequently, the greatest improvements in aerobic stability. The addition of L. buchneri 40788 alone or with P. pentosaceus resulted in similar effects on silage fermentation and aerobic stability, but the effects were variable among locations, suggesting that unidentified factors; for example, in the field or on the forage crop, may alter the effectiveness of microbial inoculation.  相似文献   

11.
The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 × 105Lactobacillus pentosus and 2.5 × 104Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 × 105Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80 ± 8 h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of dl-lactic acid, l-lactic acid relative to dl-lactic acid, free glucose, and dl-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production within farm based on test-day results from 2007 and 2008. The average milk production of lactating cows at test days during the study (January to September 2009) was 30.7 ± 0.5 kg of energy-corrected milk/d. Milk production was 104.6 ± 0.7% of the predicted yield and did not differ among treatments. In conclusion, the present study showed that homofermentative inoculants might not compete efficiently or might not deviate sufficiently from the epiphytic flora on whole-crop corn to affect fermentation in standard qualities of corn silage. Heterofermentative inoculation increased aerobic stability and numerous fermentation variables. None of the treatments affected milk production, and more-stable corn silage seemed to have a similar production value as compared with less-stable homofermented silage. Heterofermented silage can be evaluated for its properties to limit aerobic silage deterioration in the feed chain.  相似文献   

12.
Chopped barley forage was ensiled untreated or treated with several doses (1 x 10(5) to 1 x 10(6) cfu/g of fresh forage) of Lactobacillus buchneri 40788 in laboratory silos and untreated or treated (4 x 10(5) cfu/g) in a farm silo. Silage from the farm silos was fed to lactating cows. In the laboratory silo, the effects of inoculation on fermentation and aerobic stability were also compared to silage treated with a commercial inoculant and a buffered propionic acid additive. Inoculation with L. buchneri 40788 decreased the final concentrations of lactic acid but increased concentrations of acetic acid and ethanol in silage from laboratory and farm silos. Silages stored in laboratory silos did not heat after exposure to air for 7 d and were then mixed with alfalfa silage and a concentrate to form total mixed rations (TMR) that were further exposed to air. The TMR containing silages treated with L. buchneri 40788 or a buffered propionic-acid-based additive took longer to heat and spoil than the TMR containing untreated silage or silagetreated with the commercial inoculant. Silage stored in a farm silo and treated with L. buchneri 40788 had fewer yeasts and molds than did untreated silage. Aerobic stability was greater in treated silage alone and in a TMR containing treated silage. Dry matter intake (18.6 kg/d), milk production (25.7 kg/d), and milk composition did not differ between cows fed a TMR containinguntreated or treated silage. These findings show that L. buchneri can improve the aerobic stability of barley silage in laboratory and farm silos and that feeding treated silage had no negative effect on intake or performance.  相似文献   

13.
This study determined the effectiveness of an inoculant (BB), molasses, or a mixture of either BB and molasses (BBM) or BB and fibrolytic enzymes (BBE) for improving the fermentation and aerobic stability of bermudagrass. A 6-wk regrowth of Tifton 85 bermudagrass was conserved in quadruplicate mini silos alone or after treatment application. The inoculant contained a mixture of P. pentosaceus 12455, 1 x10(5) cfu/g of fresh forage, L. buchneri 40788, 4 x10(5) cfu/g of fresh forage, and beta-glucanase, alpha-amylase, and xylanase; BBE contained similar bacteria and enzymes as BB, but greater enzyme activities. Chemical composition was quantified after 2, 4, 7, 30, and 60 d of ensiling. Microbial composition and aerobic stability were measured after 60 d of ensiling, at which point the pH of additive-treated silages was consistently lower and DM recovery was higher than in untreated silages. The BB, BBM, and molasses-treated silages had less ammonia N than untreated silages, and BB, BBM, and BBE-treated silages had less residual water-soluble carbohydrates than untreated silages. All silages had high acetic acid (47.5 g/kg DM) and low lactic acid (1.7 g/kg DM) concentrations. However, untreated and BBE-treated silages had more butyric acid and ammonia N, suggesting that a clostridial fermentation had occurred. These butyric forages were more aerobically stable (27 d) but less desirable for feeding than those ensiled with BB or molasses, which were stable for 6.9 d. In conclusion, BB and molasses treatments improved the digestibility and fermentation of bermudagrass and produced higher quality silages that were stable for 6.9 d. Mixing BB with molasses or the inoculant tested was not more beneficial than BB or molasses alone.  相似文献   

14.
This experiment evaluated effects of an inoculant containing esterase-producing bacteria on fermentation, aerobic stability, in situ dry matter digestibility (DMD), and neutral detergent fiber (NDF) digestibility (NDFD) of corn silage. Two corn hybrids grown on adjacent fields [Croplan Genetics 851RR2 (CS1) and Vigoro 61R36 (CS2)] were harvested at approximately 39% dry matter. Each forage was conserved in quadruplicate in 20-L mini silos with or without application of an inoculant at a level to achieve 1.0 × 104 cfu/g of Lactobacillus casei and 1.0 × 105 cfu/g of Lactobacillus buchneri. After 110 d of ensiling, silos were opened and silages were analyzed for chemical composition, fermentation indices, microbial counts, and aerobic stability. In situ DMD, 24-h and 48-h DMD, and NDFD were measured by incubating ground (6-mm) samples in triplicate in each of 2 lactating, fistulated dairy cows fed a corn silage-based diet. Inoculation decreased concentrations of total fermentation acids and lactate, as well as lactate to acetate ratio, and increased propionate concentration compared with the uninoculated control in CS1 but not CS2. Inoculation tended to decrease yeast counts of CS1 but increased yeast counts and tended to increase the mold counts of CS2. Consequently, inoculation improved the aerobic stability of CS1 by 57.3 h (98%) but decreased that of CS2 by 20.5 h (20%). Inoculation also increased the potentially degradable fraction of CS1 and the total degradable fraction, 24-h and 48-h DMD, and 48-h NDFD of CS2. Inoculation of CS1 modified the fermentation, improved the aerobic stability, and increased the potentially degradable DM fraction. Inoculation of CS2 did not affect fermentation, but decreased the aerobic stability and increased the total degradable DM fraction, 24-h and 48-h DMD, and 48-h NDFD.  相似文献   

15.
The objective of this study was to determine if the effects of inoculation with Lactobacillus buchneri 40788 were detectable when applied to whole-plant corn stored in farm silos. Corn silage was randomly sampled from farms in Wisconsin, Minnesota, and Pennsylvania, and was untreated (n = 15) or treated with an inoculant (n = 16) containing L. buchneri 40788 alone or this organism combined with Pediococcus pentosaceus during May and June 2007. Corn silage that was removed from the silo face during the morning feeding was sampled, vacuum-packed, and heat sealed in polyethylene bags and shipped immediately to the University of Delaware for analyses. Silage samples were analyzed for dry matter (DM), nutrient composition, fermentation end-products, aerobic stability, and microbial populations. The population of L. buchneri in silages was determined using a real-time quantitative PCR method. Aerobic stability was measured as the time after exposure to air that it took for a 2°C increase above an ambient temperature. The DM and concentrations of lactic and acetic acids were 35.6 and 34.5, 4.17 and 4.85, and 2.24 and 2.41%, respectively, for untreated and inoculated silages and were not different between treatments. The concentration of 1,2-propanediol was greater in inoculated silages (1.26 vs. 0.29%). Numbers of lactic acid bacteria determined on selective agar were not different between treatments. However, the numbers of L. buchneri based on measurements using real-time quantitative PCR analysis were greater and averaged 6.46 log cfu-equivalents/g compared with 4.89 log cfu-equivalent for inoculated silages. There were fewer yeasts and aerobic stability was greater in inoculated silages (4.75 log cfu/g and 74 h of stability) than in untreated silages (5.55 log cfu/g and 46 h of stability). This study supports the effectiveness of L. buchneri 40788 on dairy farms.  相似文献   

16.
Whole-plant corn was harvested at 33 (normal) and 41% (moderately high) dry matter (DM) and ensiled in quadruplicate 20-L laboratory silos to investigate the effects of Lactobacillus buchneri 40788 (LB) or L. plantarum MTD-1 (LP) alone, or in combination, on the fermentation and aerobic stability of the resulting silage. Aerobic stability was defined as the amount of time after exposure to air for the silage temperature to reach 2°C above ambient temperature. The chopped forage was used in a 2 × 2 × 2 factorial arrangement of treatments: normal and moderately high DM contents, LB at 0 (untreated) or 4 × 105 cfu/g of fresh forage, and LP at 0 or 1 × 105 cfu/g. After 240 d of ensiling, corn silage harvested at the moderately high DM had higher pH, higher concentrations of ethanol, and more yeasts compared with the silage ensiled at the normal DM content. Inoculation with LB did not affect the concentration of lactic acid in silages with a moderately high DM, but decreased the concentration of lactic acid in the silage with normal DM. Higher concentrations of acetic acid were found in the silage treated with LB compared with those not treated with this organism. Inoculation with LP increased the concentration of lactic acid only in the silage with the normal DM content. The concentration of acetic acid was lower in silage treated with LP with a moderately high DM content, but greater in the silage treated with LP with the normal DM content when compared with silages without this inoculant. Appreciable amounts of 1,2-propanediol (average 1.65%, DM basis) were found in all silages treated with LB regardless of the DM content. The addition of L. buchneri increased the concentration of NH3-N in silages but the addition of L. plantarum decreased it. Aerobic stability was improved in all silages treated with LB, with greater aerobic stability occurring in the silage with moderately high DM compared with silage with normal DM content. Inoculation with LP had no effect on aerobic stability. There were no interactions between L. buchneri and L. plantarum for most fermentation products or aerobic stability of the silages. This study showed that inoculating whole-plant corn with L. buchneri 40788 or L. plantarum MTD-1 has different beneficial effects on the resulting silage. There appear to be no major interactions between these organisms when added together to forage. Thus, there is potential to add both organisms simultaneously to improve the fermentation and aerobic stability of corn silage.  相似文献   

17.
Two experiments were conducted to study the effects of wilting and inoculating Lactobacillus casei or Lactobacillus buchneri on the fermentation and aerobic stability of grass silages. Chopped Italian ryegrass (IR) and Festulolium (FE) were ensiled with or without wilting and added L casei (>106 cfu g?1 fresh matter (FM)) or L buchneri (>106 cfu g?1 FM). Silos were opened after 120 days and microbial counts, fermentation products and aerobic stability were determined. Addition of L casei increased lactic acid and decreased acetic acid and dry matter loss regardless of wilting and forage species. Inoculation of L buchneri decreased lactic acid and increased acetic acid and 1,2‐propanediol, while the effects appeared greater in direct‐cut than in wilted grass silages. Although 1,2‐propanediol accumulated in FE silage, the diol was degraded further to propionic acid and 1‐propanol in IR silage. The activity of 1,2‐propanediol degradation was lowered when IR was wilted prior to ensiling; 1,2‐propanediol remained and the production of propionic acid and 1‐propanol was less than one‐third of that in direct‐cut silage. Regardless of forage species, addition of L buchneri increased dry matter loss compared with the untreated control, whereas the loss was not significant in wilted silages. Ammonia production was increased by L buchneri in direct‐cut but not in wilted silages. No heating was observed with or without inoculation in direct‐cut IR silage after exposure to air. Other silages were deteriorated when L buchneri was not inoculated, while the spoilage was accelerated when L casei was added to FE. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
《Journal of dairy science》2021,104(10):10678-10698
We evaluated the ability of an inoculant containing a combination of Lactobacillus hilgardii and Lactobacillus buchneri to modify the microbiome and improve the aerobic stability of whole-plant corn silage after various lengths of ensiling. Chopped whole-plant corn at about 33% dry matter (DM) was uninoculated (CTR) or inoculated with L. hilgardii CNCM I-4785 and L. buchneri NCIMB 40788 at 200,000 cfu/g of fresh forage weight each (combined application rate of 400,000 cfu of lactic acid bacteria/g of fresh forage weight; LHLB), L. buchneri NCIMB 40788 at 400,000 cfu/g of fresh forage weight and Pediococcus pentosaceus NCIMB 12455 at 100,000 cfu/g of fresh forage weight, used as a positive control (LB500), L. hilgardii CNCM I-4785 at the application rate used in the LHLB formulation of 200,000 cfu/g of fresh forage weight (LH), or L. buchneri NCIMB 40788 at the application rate used in the LHLB formulation of 200,000 cfu/g of fresh forage weight (LB). Silos were opened after 34 and 99 d of ensiling and analyzed for nutrient composition, fermentation profile, microbiome, and aerobic stability. After 34 d of ensiling, the inoculated silages had greater numbers of culturable lactic acid bacteria, a bacterial community less rich and diverse, greater relative abundance of Lactobacillus, lower relative abundance of Klebsiella, and a greater concentration of propionic acid than uninoculated silages. Inoculation decreased the ratio of lactic acid to acetic acid, except for LB alone. Treatment LHLB resulted in silage with a greater concentration of 1,2-propanediol than LB500 and was the only treatment to have a lower relative abundance of Saccharomycetes compared with uninoculated silage. Treatments LHLB and LB500 improved the aerobic stability compared with CTR, but the individual LH and LB treatments applied at a low dose did not. Whereas LB500 was stable 34 h longer than CTR, LHLB was stable 91 h longer. After 99 d of ensiling, all inoculated silages had markedly greater aerobic stability than uninoculated silage and were stable for more than 360 h. The inoculant containing a combination of L. hilgardii and L. buchneri markedly improved the aerobic stability of corn silage after a relatively short period of ensiling, and such improvements were greater than the ones obtained from inoculation with the combination of L. buchneri and P. pentosaceus. Inoculating with the combination of L. hilgardii and L. buchneri may be helpful to producers that must feed silage shortly after ensiling.  相似文献   

19.
Sixty-three strains of the taxonomically related species Lactobacillus plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, L. paraplantarum and L. pentosus isolated from sourdoughs and other food and non-food sources and 14 strains of other members of the genus Lactobacillus were screened for their tolerance of acid, alkaline, heat, oxidative, osmotic, detergent and starvation stresses in order to evaluate the diversity of stress response. Most strains of the L. plantarum group were highly tolerant of acid, alkaline and osmotic stress and highly sensitive to detergent stress, while a larger diversity was found for other stress. Multivariate analysis allowed grouping the strains in clusters with similar response patterns. Stress response patterns in the L. plantarum group were similar to those of species of the L. casei/L. paracasei group but clearly different from those of other mesophilic Lactobacillus. No relationship was found between grouping obtained on the basis of stress response patterns and by genotypic fingerprinting (rep-PCR), nor with the taxonomic position or isolation source of the strains. Further experiments with selected strains showed that exponential phase cells were generally but not always more sensitive than stationary phase cells. The ability to grow under stressful conditions showed a slightly better correlation with the ecological conditions prevailing in the isolation niches of the strains.This study will be the basis for further investigations to identify and exploit the basis of diversity in the stress response of lactic acid bacteria.  相似文献   

20.
Whole crop corn (DM 29.2%) and a total mixed ration (TMR, DM 56.8%) containing wet brewers grains, alfalfa hay, dried beet pulp, cracked corn, soybean meal, and molasses at a ratio of 5:1:1:1:1:1 on fresh weight basis, were ensiled with and without Lactobacillus casei or Lactobacillus buchneri in laboratory silos. The effects of inoculation on microbial counts, fermentation products, and aerobic stability were determined after 10 and 60 d. Untreated corn silage was well preserved with high lactic acid content, whereas large numbers of remaining yeasts resulted in low stability on exposure to air. Inoculation with L. casei suppressed heterolactic fermentation, but no improvements were found in aerobic stability. The addition of L. buchneri markedly enhanced the aerobic stability, while not affecting the DM loss and NH3-N production. Large amounts of ethanol were found when the TMR was ensiled, and the content of ethanol overwhelmed that of lactic acid in untreated silage. This fermentation was related to high yeast populations and accounted for a large loss of DM found in the initial 10 d. The ethanol production decreased when inoculated with L. casei and L. buchneri, but the effects diminished at 60 d of ensiling. Inoculation with L. buchneri lowered the yeasts in TMR silage from the beginning of storage; however, the populations decreased to undetectable levels when stored for 60 d, regardless of inoculation. No heating was observed in TMR silage during aerobic deterioration test for 7 d. This stability was achieved even when a high population of yeasts remained and was not affected by either inoculation or ensiling period. The results indicate that inoculation with L. buchneri can inhibit yeast growth and improve aerobic stability of corn and TMR silage; however, high stability of TMR silage can be obtained even when no treatments were made and high population (>10(5) cfu/g) of yeasts were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号