首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Ti35Nb合金为基材,通过阳极氧化和中温热处理制备了Nb掺杂TiO2纳米管阵列。通过掩模版和磁控溅射技术在纳米管阵列表面形成了Pt电极,随后在低浓度H2气氛中测试了Nb掺杂TiO2纳米管阵列的氢敏性能。实验结果表明阳极氧化温度是影响纳米管生长的一个重要因素,在阳极氧化电压为15V和阳极氧化温度为30℃的条件下可以获得均匀开口的非晶纳米管阵列。将非晶纳米管在450℃热处理后可以获得锐钛矿结构纳米管阵列。氢传感实验结果表明,Nb掺杂TiO2纳米管对低浓度气氛具有室温氢敏特性。以上实验结果表明,通过合金化设计和阳极氧化可以制备出具有室温氢传感特性的掺杂纳米管阵列。  相似文献   

2.
采用电化学阳极氧化法在钛箔表面制备了TiO2纳米管阵列膜层,形成TiO2纳米管柔性光阳极并应用于染料敏化太阳电池(DSSC)。用X射线衍射、扫描电镜及紫外可见光谱仪对纳米管阵列的物相、微观形貌及光学性能进行表征,探讨了阳极氧化时间和TiCl4处理对TiO2纳米管光阳极组装DSSC光电性能的影响。结果表明,500℃热处理后,出现明显的锐钛矿型TiO2的特征峰,且TiO2纳米管阵列垂直取向、排列紧密,长度约为23.17μm,其吸光度比TiO2纳米颗粒薄膜高;与未经TiCl4处理相比,经TiCl4处理的氧化时间为9 h的TiO2纳米管组装DSSC的光电转换效率提高了5.80%,其开路电压为0.76 V,短路电流密度为6.92 mA·cm-2,填充因子为0.45,光电转换效率达到2.37%。  相似文献   

3.
利用电化学沉积法在TiO2纳米棒阵列上沉积了CdTe量子点,通过调节沉积时的电量使整个TiO2纳米棒上覆盖了致密均匀的CdTe量子点,CdTe和TiO2形成了核壳结构。研究了沉积电量对FTO/TiO2/CdTe光电极的结构及光电性能的影响,发现随着沉积电量的增大,FTO/TiO2/CdTe光电极的吸收边发生红移。当沉积电量为0.9C时,在光强为0.1 W/cm2、AM 1.5 G标准模拟太阳光照射下,所制光电极产生最大的饱和光电流密度3.23×10–3A/cm2。  相似文献   

4.
《微纳电子技术》2020,(3):183-187
采用湿法纺丝的方法制备了石墨烯纤维无纺布电极,并将该电极应用于超级电容器。电化学测试结果表明,160μm厚的石墨烯纤维无纺布电极质量比容量高达164 F·g~(-1)(电流密度为0.1 A·g~(-1)时),面积比容量为910 mF·cm~(-2)(电流密度为1 mA·cm~(-2)时),当将两片相同大小的160μm厚的石墨烯纤维无纺布叠加作为一个电极进行测试时,面积比容量高达1 800 mF·cm~(-2)。电流密度从1 mA·cm~(-2)升高到20 mA·cm~(-2)时,面积比容量保持率为62%(560 mF·cm~(-2)),表明石墨烯纤维无纺布电极具有很好的倍率性能。在10 A·g~(-1)的电流密度下循环10 000次后,容量保持率为79.5%,表明石墨烯纤维无纺布电极具有良好的循环稳定性。因此,石墨烯纤维无纺布电极以其新颖的制备技术,在柔性电子器件中具有良好的应用前景。  相似文献   

5.
将多组分活性材料组合成新的结构用作电极材料是提高超级电容器性能的一种有效措施。采用典型的两步水热法与电沉积法制备了FeCo2S4/Ni(OH)2复合纳米材料,并表征其物理及电化学性能。结果表明,FeCo2S4纳米花被电沉积上的Ni(OH)2纳米片包围,形成三维互连网状结构,有利于电极材料与电解液的充分接触。所得的FeCo2S4/Ni(OH)2复合电极材料显示出极高的比电容(当电流密度为1 A·g^-1时,比电容达1588.2 F·g^-1)、优异的倍率性能及循环稳定性。此外,以FeCo2S4/Ni(OH)2为正极、活性炭为负极组装了非对称超级电容器。结果显示,非对称超级电容器具有高能量密度及良好的循环稳定性。  相似文献   

6.
适量Fe~(3+)掺杂可以提高TiO2薄膜电极的光催化氧化活性。采用交流阻抗谱、平带电势等方法研究了掺杂Fe~(3+)的纳米TiO_2薄膜电极的表面结构特征及其催化性能,为其光电转换机理提供了电化学依据。  相似文献   

7.
利用循环伏安电沉积法将CdS纳米颗粒沉积在TiO2纳米棒阵列上制备了CdS/TiO2复合薄膜,采用XRD、SEM和UV-Vis分光光度计对样品的晶体结构、微观形貌和光学性质进行了表征,并研究了紫外光预处理TiO2对复合薄膜的结构和光电化学性能的影响。结果表明,制备的TiO2薄膜为沿c轴择优取向的金红石单晶,CdS成功电沉积到TiO2纳米棒的顶部形成了CdS/TiO2球棒结构异质结,所制复合薄膜的光吸收边均扩展到了可见光区域。特别是对TiO2纳米棒阵列进行紫外线照射预处理后,复合薄膜中CdS的含量显著提高,其表现出更好的光电化学性能。  相似文献   

8.
采用商用P25TiO2为原料制备纳米多孔TiO2电极,用水热法在多孔TiO2表面包覆SrTiO3。采用X射线衍射仪、扫描电子显微镜及紫外-可见光谱仪对TiO2/SrTiO3薄膜电极进行表征。探讨了水热反应温度对TiO2/SrTiO3薄膜电极组装染料敏化太阳能电池(DSSC)的光电化学性能影响。结果表明:在纳米多孔TiO2电极表面生成了均匀的SrTiO3包覆层,且SrTiO3包覆的样品吸收边有红移;与TiO2薄膜电极相比,不同水热反应温度下制备的TiO2/SrTiO3薄膜电极组装DSSC的光电转换效率均有所提高,180℃时全光转换效率提高了24%。  相似文献   

9.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

10.
采用快速、简便的两步合成法,将RuO_2纳米粒子均匀地负载在氮掺杂多孔碳(NPCs)上,形成RuO_2/NPCs复合材料。首先以壳聚糖为前驱体,SiO_2纳米颗粒为硬模板,制备出比表面积高、呈三维多孔结构的氮掺杂多孔碳材料;在此基础上,将RuO_2纳米粒子通过溶胶-凝胶法均匀负载到NPCs碳骨架的表面和孔隙中,得到RuO_2/NPCs-800复合材料。研究结果表明,RuO_2均匀负载在NPCs的碳骨架上,有效地提高了复合材料的导电性;同时,电化学性能测试显示,RuO_2对复合材料的电化学性能有显著提高,当电流密度为0.5 A/g时,RuO_2/NPCs-800复合材料的比电容高达411.5 F/g,相当于同等条件下NPCs(123.9 F/g)的3.3倍;同时显示较好的循环稳定性,在5 A/g电流密度下,5000次循环后,只有6.3%比电容降低。  相似文献   

11.
利用苯胺原位化学聚合合成聚苯胺包覆凹凸棒石,再经过高温热处理得到氮掺杂碳包覆凹凸棒石。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅立叶转换红外线光谱(FTIR)、差热分析法(DTA)对样品形貌和化学结构进行表征,利用循环伏安法、恒电流充放电及交流阻抗技术研究其用作超级电容器电极材料时的电化学性能。研究表明,氮掺杂碳包覆凹凸棒石在6 mol·L~(–1)的KOH电解液中具有较好的电容性能,在20 m V·s~(–1)的扫速下质量比电容可达161.9 F·g~(–1),且该复合材料具有较小的内阻和良好的电容稳定性。  相似文献   

12.
首先利用电化学阳极氧化方法在钛箔上合成整齐有序的TiO2纳米管阵列(TNA);然后采用电化学沉积的方法在纳米管表面均匀沉积高功函数的Pt纳米颗粒以构建Pt/TNA肖特基结,通过SEM、EDS和XRD等表征方法研究了Pt/TNA肖特基结的表面形貌和结构;最后通过测试不同光照强度下的电压-电流(V-I)和电流-时间(I-t)曲线研究了Pt/TNA肖特基结的紫外光电性能。实验发现,在1V偏压和光照强度为1.37mW/cm2的375nm紫外光照射下,Pt/TNA肖特基结的光电流可达3.71μA,响应度为0.015A/W,外量子效率为5.11%,光响应因子高达1 892.8,表明紫外光电探测性能得到显著提高。  相似文献   

13.
金属有机框架(MOF)具有比表面积较大、形貌多样和金属中心丰富等优点。然而传统的以对苯二甲酸(BDC)为配体的MOF直接用作超级电容器电极材料时其比电容低、稳定性差。为此以双苯环有机配体2,6萘二羧酸(2,6NDC)为链接剂,采用简单高效的一步溶剂热法成功合成了超薄片状2D纳米阵列2,6NDC MOF材料,对其物相结构和表面形貌进行了表征分析,并探究了其电化学性能。结果表明,在电流密度为1 A·g-1下,基于2,6NDC的超薄片状2D纳米阵列MOF具有较高的比电容,为136.2 F·g-1,而以BDC为配体的MOF比电容只有53.9 F·g-1。以2,6NDC MOF构筑的超级电容器在电流密度0.5 A·g-1下的能量密度为28.2 W·h·kg-1,功率密度为1 650.7 W·kg-1,且在15 000次循环后依然有约125%的初始放电比容量,显示出优异的循环稳定性。  相似文献   

14.
硫化铜(CuS)具有优异的导电性(电导率为10-3 S·cm-1),在能源领域具有广泛的应用前景。为了进一步提高CuS作为锂离子电池负极材料时的比容量,对CuS进行改性。通过在室温液相条件下的歧化反应将硫单质与CuS进行复合,提升了其电化学性能。实验结果表明,合成的CuS@7S复合材料在0.05~0.5 A·g-1的不同电流密度下都有较高的比容量和较高的库伦效率,CuS@7S复合材料在0.05 A·g-1电流密度下的放电比容量为1 075 mA·h·g-1,相比于CuS,其得到了极大的提高。表明S与CuS的复合可为电化学储能提供更多的活性物质,改善材料的导电性,成功提升电极材料比容量。  相似文献   

15.
采用溶胶-凝胶法在玻璃衬底上制备TiO2多孔薄膜,掺杂不同功函数的金属离子制备M-TiO2纳米薄膜电极,XRD、AFM,UV-Vis检测M-TiO2结构、形貌和性能.结果表明:掺杂摩尔分数2%的金属离子没有改变TiO2的晶格结构,但其吸收峰在可见光区都发生明显的红移,禁带宽度降低,掺杂后的M-TiO2电极比没有掺杂的T...  相似文献   

16.
锂离子电池正极材料纳米LiFePO_4   总被引:1,自引:0,他引:1  
综述了LiFePO4的晶体结构、充放电机理、电化学性能、存在问题以及纳米技术近年来在LiFePO4中应用的最新进展。纳米LiFePO4的制备方法主要有高温固相反应法、水热合成法、溶胶凝胶法、微波合成法等。材料的粒径大小及分布、离子和电子的传导能力对产品的电化学性能影响较大,在制备时采用惰性气氛、掺杂改性以及控制晶粒的生长尺寸是关键,电极材料的微纳米化对锂离子电池的电化学性能和循环性能的改善有着显著的意义,展望了纳米正极材料LiFePO4用于锂离子电池的未来前景。  相似文献   

17.
通过水热法制备了掺杂不同含量钴离子的多孔结构MnO_2纳米花球,研究了锰氧化物掺杂前后的实际放电比容量,从而比较钴离子含量对其电化学性能的影响。对不同样本做了结构、形貌及电化学性能方面的测试。通过XRD谱说明钴离子均一地掺杂到了锰氧化物的中间。通过SEM照片可以看到产品的微观形貌均是由纳米片层状结构组装成的纳米花球。在未掺杂钴时,纳米花球的颗粒大小不均一,而掺杂摩尔分数10%的钴离子后,大大降低了自组装结构的尺寸,并且使得材料的微观表面更加疏松,这种减小的尺寸使得电解液的进入更加容易,从而使得材料的利用率大大增加。通过恒电流充放电测试显示,当钴掺杂量为摩尔分数10%时,锰氧化物比容量最大可达410.158 F·g~(–1)。  相似文献   

18.
利用两步法成功制备出两种MnCo_2O_4纳米等级结构材料,研究了其电化学性能。结果证实得到的纳米片为MnCo_2O_4纳米等级结构,并均匀生长在泡沫镍基底上,电化学性质测试表明,这种纳米片/泡沫镍复合电极表现出优异的电化学性质。这种优异的性质与介孔的Mn Co2O4纳米片这一新颖的结构有密切的关系,5 A/g时的比电容值高达475 F/g。MnCo_2O_4/泡沫镍复合材料是一种非常有潜力的超级电容电极材料,MnCo_2O_4纳米材料结构和形貌对超级电容器电极材料的电化学性质有较大的影响。  相似文献   

19.
低温下(0℃)化学氧化合成了盐酸掺杂聚吡咯。分别以聚吡咯和活性炭为电极材料组装成电化学电容器。采用扫描电镜、恒流充放电、循环伏安和交流阻抗测试仪研究了混合电容器的电化学性能。结果表明:低温下合成的聚吡咯呈颗粒状堆积,粒径为100~300nm;电流密度为6×10–3A/cm2时,混合电容器在1mol/LNa2SO4电解液中比电容高达178.6F/g,100次循环后比电容为初始容量的88.4%,漏电流仅为0.16×10–3A/cm2。  相似文献   

20.
利用水热法分别制备了MnO_2纳米线和纳米球。通过场发射扫描电子显微镜(FESEM)和X射线衍射仪(XRD)对两种形貌的MnO_2粉末进行表征,并使用循环伏安法(CV)、恒流充放电(GCD)和交流阻抗测试研究MnO_2电极材料在KOH和Na_2SO_4电解液下的电化学行为。结果表明,MnO_2纳米球形成机理为:先溶解后聚集并呈各向异性生长状态。在2 mol/L KOH或3 mol/L Na_2SO_4电解液中的MnO_2纳米球性能均优于纳米线,比电容分别为756.44 F/g和333.65 F/g;与MnO_2纳米线对比,MnO_2纳米球的比电容分别提高了59.06%和52.14%。经分析可知,MnO_2材料与电解液之间存在一定的匹配性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号