首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并制作了一种"四悬臂梁-中心质量块"结构的振动能量拾取微机电系统(MEMS)压电式微能源,实现了环境振动能量向电能的转换。首先利用溶胶-凝胶工艺完成锆钛酸铅(PbZrxTi1-xO3,PZT)压电薄膜的异质集成制备;然后通过MEMS工艺和引线键合技术进行器件基础结构的集成制造;最后借助振动测试系统对该器件的各项输出性能进行测试。测试结果表明,8Hz谐振频率工作状态下,该压电式微能源器件的输出电压峰-峰值随着加速度激励的增加呈线性增大,当加速度激励为10 m/s2时,该能量采集器件的输出电压峰-峰值为82.4mV。在器件两端加载2.0 MΩ的负载时,器件输出功率密度达最大值(为2.074 3μW/cm3)。  相似文献   

2.
基于压电效应的MEMS振动式微能源器件   总被引:1,自引:0,他引:1  
设计了一种硅基压电功能材料的四悬臂梁-中心质量块结构MEMS振动式微能源器件,可将环境振动能量有效转化为电能。采用溶胶-凝胶法制备硅基锆钛酸铅(PbZr0.53Ti0.47O3,PZT)压电功能薄膜,经干/湿法刻蚀和溅射沉积等MEMS工艺实现器件功能结构的制备。研制的器件整体结构尺寸为7 000μm×7 000μm×300μm,单个PZT压电单元面积为0.149 6 mm2。将悬臂梁上4个压电单元串联以实现输出最大化,测试结果表明,器件的谐振频率为300 Hz,适于低频振动环境;输出电压在一定范围内随加速度增加而增大;在加速度为10 g时压电单元单位面积输出电压达1.19 mV/mm2。  相似文献   

3.
MEMS压电-磁电复合式振动能量采集器   总被引:1,自引:0,他引:1  
具有高能量输出密度的自我供电振动能量采集技术有着迫切的应用需求,是智能化MEMS器件系统发展的重要方向。研究了一种可将外界环境振动能转化为电能的MEMS压电-磁电复合振动能量采集器,其综合了压电发电和磁电发电的优势,为新型MEMS供电研究提供了新思路。利用溶胶-凝胶工艺完成锆钛酸铅(PZT)压电功能薄膜的制备,采用MEMS加工技术完成器件四悬臂梁-中心质量块基础结构的设计和制作,结合集成封装技术实现微结构与永磁铁的微组装。测试结果表明:在一阶谐振频率247 Hz,10 g加速度激励的振动状态下,器件压电部分压电敏感单元与磁电部分电感线圈的单位体积最大有效输出电压分别为2.066×107和5.002×106 mV/cm3。  相似文献   

4.
设计了一种低频压电d31模式的"八悬臂梁-中心质量块"结构微机电系统(MEMS)振动能量采集器,实现环境振动能量向电能的转换。首先利用溶胶-凝胶工艺实现PZT压电薄膜的异质集成制造,单个锆钛酸铅(PZT)压电敏感单元的有效尺寸为935μm×160μm×1.5μm;然后通过MEMS加工工艺完成器件微结构的加工制造,器件结构有效体积为9.936×10~(-4)cm~3;最后借助振动测试系统对该器件的各项输出性能进行测试。测试结果表明,谐振频率为60Hz、加速度激励为1g(g=9.8m/s~2)时,该能量采集器的输出电压峰-峰值为232mV。在其两端加载3.0 MΩ的负载时最大输出功率为6×10~(-4)μW,输出功率密度为0.604μW/cm~3,PZT压电敏感单元有效面积下的输出功率密度为0.025μW/cm~2。  相似文献   

5.
理论分析得到微悬臂梁式压电能量采集器的设计准则.采用一种新颖的制造工艺,将高性能压电陶瓷锆钛酸铅(PZT)块材与硅片在540 ℃高温下键合1 h后,减薄并切割成形成压电悬臂梁.使用ANSYS软件进行仿真,得到了器件的固有频率、尖端位移和电压输出的频率响应.设计一套振动能量采集器测试装置,并对器件进行测试.测试结果表明,所制得的器件固有频率为2 580 Hz,在10 m/s2的正弦加速度激励下,其输出峰-峰值电压达1.58 V,测试结果与仿真分析基本吻合.  相似文献   

6.
唐姝婷  王德波 《微电子学》2023,53(1):153-158
为了降低谐振频率,实现多方向收集和提高输出性能,提出了一种4π圆弧螺旋压电能量收集器。通过分析器件尺寸与输出性能之间的关系来提高器件性能,将优化后的模型进行COMSOL仿真,分析振动位移、应力以及谐振频率。相对于2π圆弧螺旋压电能量收集器,4π圆弧螺旋压电能量收集器具有更低的谐振频率和更高的输出电压。4π圆弧螺旋压电能量收集器的谐振频率为48 Hz,输出电压达到12.3 V,输出功率达到400μW。  相似文献   

7.
为了拓宽有效的输出带宽,通过激光切割法进行加工,设计并制备了一种具有叉指结构的锆钛酸铅(PZT)悬臂梁式压电振动能量采集器(PVEH)。仿真结果显示,相比常规的悬臂梁式PVEH,具有叉指结构的悬臂梁式PVEH拥有更低的一阶固有频率以及更多的输出电压峰值。利用双通道示波器、函数信号发生器、振动台、加速度计和功率放大器等搭建测试平台,对制备的悬臂梁式PVEH进行测试。结果表明,在0.5g加速度的条件下,常规的悬臂梁式PVEH的固有频率为30.80 Hz,输出电压峰值为4.88 V;具有叉指结构(叉指数目为8且叉指长度为40 mm)的悬臂梁式PVEH具有4个固有频率,分别为17.70、37.30、74和81 Hz,对应的输出电压峰值分别为7.28、3.07、0.366和0.084 V。通过对比研究发现,具有叉指结构的悬臂梁式PVEH的一阶固有频率降低了42.53%,一阶输出电压峰值提升了49.18%,实现了性能的有效提升。  相似文献   

8.
采用了溶胶 凝胶技术在不锈钢基体上制备了厚为10 μm、结构致密的锆钛酸铅(PZT)厚膜。研究了不同退火条件对厚膜结晶状况的影响,X射线衍射分析表明,采用700 ℃退火处理20 min后得到了PZT厚膜的纯钙钛矿相结构。厚膜的电学性能测试结果显示,厚膜的剩余极化强度(Pr)为7.5 μC/cm2, 矫顽场强(Ec)为7.2 V/μm,压电常数(d33)为73 pC/N。设计制作了长20 mm、宽4 mm的压电悬臂梁结构振动能量收集器。输出性能测试结果显示,振动频率为95 Hz,采集器输出电压最高,输出电压值为862 mV。  相似文献   

9.
提出了一种2π弧度的直角螺旋悬臂梁结构的压电能量收集器。该设计一方面可以降低谐振频率,另一方面可以提高单位体积的能量收集效率。悬臂梁整体结构厚度为2 mm,宽度为6 mm,整体尺寸大小为22 mm×26 mm。当施加的激励为0.1g加速度时,仿真输出电压为1.95 V,测量输出电压为1.8 V,相对电压误差为7.7%;仿真谐振频率为269 Hz,测量谐振频率为265 Hz,相对频率误差为1.5%;理论输出功率为7.04μW,测试输出功率最大为5.79μW,相对功率误差为17.8%。该压电能量收集器适用于便携式微电子系统。  相似文献   

10.
通过有限元分析软件ANSYS对压电单晶悬臂梁进行仿真分析,再经实验,研究了基板材质、粘结胶、激振力加速度和激振频率对输出电压的影响.结果表明,弹性模量较大的基板能提高输出电压,采用不导电胶比导电胶的输出电压大;压电悬臂梁对激振频率有很好的选择性,当频率为33 Hz时,输出电压为25.3 V;这有助于优化器件结构,设计出...  相似文献   

11.
利用溶胶-凝胶工艺实现均匀致密压电(PZT)膜与Pt/Ti/SiO2/Si/SiO2晶片良好异质集成制造,结合湿法腐蚀、干法刻蚀、磁控溅射、光刻和剥离等MEMS加工工艺制造了一种"单中心质量块-8悬臂梁"结构的压电式微型振动发电机,实现了振动能向电能的转换。测试结果表明:在谐振频率16 Hz、加速度激励3 g、16个压电敏感单元相串联条件下,器件开路输出交流电压峰峰值最大,为166.40 mV;当加载1.20 MΩ负载时,输出功率最大,为0.73 nW,单位体积的输出功率为37.27 nW/cm3,压电敏感单元有效单位面积下的输出功率为0.26 nW/cm2。  相似文献   

12.
利用块材钛酸锆铅(PZT)材料的逆压电效应设计并制备了可用于微泵驱动的压电驱动器,通过5种结构模型的仿真分析确定了压电驱动器的隔膜式结构,在获取较大中心位移的同时有效提高了结构强度,增加了驱动器的适用性。工艺上通过键合、减薄、激光烧蚀及硅的湿法刻蚀工艺完成了器件的制备,施加频率10 Hz和100 Hz的交变信号测出了中心膜片位移与对应电压的关系,施加峰峰值为1 V的信号测得共振频率为70 kHz。基于制备的压电驱动器设计并制备了机械式带止回阀的微泵,经测试泵入、泵出功能正常。当对微泵外加峰峰值为30 V、频率为500 Hz的驱动电压信号时,每分钟能驱动的液体流量为55μL。该驱动器的驱动效果好,可进一步结合不同的微阀设计制备性能更加优良的微泵。  相似文献   

13.
罗翠线  秦敏哲 《电子学报》2020,48(3):554-560
针对传统压电发电机固有频率单一,频率采集范围窄和能量采集效率低等缺陷,且无法满足当前无线传感器在特殊工作环境中所需的宽频带和大功率输出.本文基于模态分离技术提出了一种3×n阵列式压电发电结构,并利用COMSOL有限元仿真软件对其进行仿真分析,优化参数后3×5阵列式采集系统在低于50Hz的频率范围内带宽为15.6Hz.实验测试结果发现3×5阵列式发电机的带宽拓宽至13.8Hz;同时在11Hz的共振频率下,最优负载电阻值为350kΩ时,可获得的最大输出功率为2.12mW;最后测试其半功率(1.05mW)带宽达15.3Hz.本文所提出的模态分离技术使阵列采集系统的带宽明显提高且输出功率增大,这个优异的输出性能使得其在多源、宽频振动环境中具有明显的优势.  相似文献   

14.
提出了一种压电悬臂梁结构的微拾振器,利用有限元法计算了结构的固有频率和电压输出,以设计适合具体应用环境的器件结构。采用MEMS技术制备了器件原型并进行了试验测试。研究表明,所制备的器件在加速度为9.8 m/s2的低频谐振激励下电压输出达200 mV以上。考虑到压电薄膜的制备和湿法刻蚀硅造成的不均匀性,可以认为,测试结果和模拟结果基本相符,为设计、制备高性能的器件打下了良好的基础。  相似文献   

15.
提出了一种螺旋悬臂梁结构的可植入式压电能量收集器,这种结构的能量收集器可为植入式医疗器件供电。螺旋结构的设计一方面可以使悬臂梁从多个方向的振动中吸收能量,另一方面还可以降低谐振频率。提出的悬臂梁整体结构厚度为40 μm,宽度为1 mm,整体外部大小为 9 mm×9 mm。该结构中,悬臂梁的末端附上质量块,进一步降低悬臂梁的谐振频率。该收集器的谐振频率为66 Hz,当施加的激励为1g加速度时,输出开路电压为2.2 V,输出功率为4.8 μW。  相似文献   

16.
利用压电材料制作的器件采集环境中的振动能量,并转化为电能的微尺度器件正日益受到广泛关注。通过有限元仿真分析,研究了新颖的垂直式纳米线阵列结构(VING)和常见的压电悬臂梁结构的能量收集性能。在更贴近实际情况的低频条件下计算了75 000根纳米线阵列结构和压电悬臂梁结构的输出电压以及单位体积能量输出功率,并指出了其各自的特点。最后得出结论:VING更适于在振动强度较大的环境中工作,而悬臂梁结构则更适于在接近其谐振频率的环境中工作。  相似文献   

17.
利用柔性压电材料从流体的流动中获取能量已成为一个研究热点。该文研究了一种压电纤维复合材料(MFC)在水中摆动激励下的压电特性,建立了MFC压电纤维片在水中摆动激励下的数学模型,并结合MFC压电纤维片的压电输出机理得出影响MFC压电纤维片输出开路电压幅值大小的因素。最后设计搭建了MFC压电纤维片在水中摆动的试验台,利用该试验台验证了模型的正确性,并研究了MFC压电纤维片在不同摆动频率下的压电特性。结果表明,在摆角幅值为10°,摆动频率为1.75 Hz时,MFC的输出开路电压幅值取得最大值(600 mV),继续增大摆动频率,输出开路电压幅值逐渐减小。  相似文献   

18.
罗元  万沙浪  甘如饴  王兴龙 《微电子学》2016,46(3):419-423, 428
在经典的矩形悬臂梁结构基础上进行改进,设计了一种新型的基板与压电膜镂空的微悬臂梁能量采集器。在悬臂梁基板与压电膜上添加镂空,分析其结构尺寸(即镂空的长度、宽度、厚度以及数量)与压电振子固有频率和开路输出电压之间的关系,并通过调节其结构尺寸,使压电能量采集器具有更低的振动频率与更高的开路输出电压。实验结果表明,在镂空长度为200 μm,宽度为165 μm,数量为12时,该结构振子的固有频率可达到399.7 Hz,开路输出电压可达0.271 V。  相似文献   

19.
提出一种变截面悬臂梁压电俘能器结构,通过有限元仿真分析其振动特性和输出电压,有利于提高发电性能。该俘能器结构固定端为等截面梁,自由端为变截面梁,压电层粘贴在悬臂梁根部等截面梁表面,改变悬臂梁自由端与固定端的宽度比,得到多种不同形式的变截面悬臂梁。对比分析了三角形梁、矩形梁和具有不同宽度比梯形梁的固有频率、应力和应变分布及简谐激励输出电压响应。结果表明,三角形梁固有频率较大,输出电压最大,同时分析了不同变截面段长度对输出电压的影响。该文还分析了具有相同一阶频率、不同宽度比俘能器的输出电压,表明三角形结构单位体积压电层输出电压最大。对比分析了基体层上根部粘贴压电片和全部粘贴压电片的输出电压特性。结果表明,前者输出电压较大,发电性能更好。  相似文献   

20.
梁光胜  李艺 《压电与声光》2018,40(3):423-427
基于微机电系统(MEMS)设计了风车型结构的压电振动能量采集器,通过压电效应将低频振动能量转化为电能,用以解决环境中低频能量采集的问题。风车型结构的压电振动能量采集器以硅为基底,以PZT 5A为压电材料,包含上、下电极;4条悬臂梁旋转连接中心质量块与四周固定端,类似于风车结构。数学建模与有限元仿真分析表明,在结构尺寸与材料相同的情况下,圆弧风车型结构的谐振频率较直接连接、直角连接结构的谐振频率更低;4条悬臂梁距离中心质量块越远,谐振频率越低;在0.1g(g=9.8 m/s2)加速度谐振状态下,输出电压约为6.2 V,最大位移接近1.2 mm。基于MEMS工艺,通过IntelliSuite软件研究和定义了风车型振动能量采集器的工艺流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号