共查询到17条相似文献,搜索用时 62 毫秒
1.
采用DEFORM-3D有限元软件研究了限制模压变形(Constrained Groove Pressing,CGP)和非限制模压变形(Unconstrained Groove Pressing,UGP)两种变形方式对模压变形5052铝合金等效应变累积速率和最终等效应变量的影响,并试验研究了两种变形方式对5052铝合金晶... 相似文献
2.
总结了等径角挤压(Equal channel angular pressing,简称ECAP)制备超细晶材料的研究内容、原理、工艺参数、显微组织演化及其对材料性能的影响,介绍了研究等径角挤压工艺的有限元模拟软件,并概述了目前国内外对等径角挤压技术的研究进展.最后,指出了今后研究仍需努力的方向. 相似文献
3.
7050铝合金等通道转角挤压的有限元模拟及力学性能 总被引:2,自引:0,他引:2
采用有限元技术模拟7050Al合金等温等通道转角挤压过程,得到摩擦系数、挤压速度和挤压转角等挤压参数对7050Al合金变形区的应变分布和挤压载荷的影响规律.结果表明:挤压转角和摩擦系数对材料变形区的应变和挤压载荷的影响较大,挤压转角越小、摩擦系数越大时材料变形区的应变值越大,挤压载荷也越大;挤压速度对材料的应变和挤压载荷的影响很小.对经过挤压的材料进行拉伸实验,结果表明:在挤压初期,材料的抗拉强度随挤压次数的增加而很快增加,此后随挤压次数增加基本达到一恒定值,挤压转角越小材料的强度值增加越大.在单次挤压后,材料的延伸率很快下降,此后随挤压次数增加延伸率有回升的趋势. 相似文献
4.
通过光学显微镜、扫描电镜、能谱和X射线衍射分析和拉伸实验等试验分析方法,研究不同热轧变形量(54%、75%)对5052铝合金微观组织和力学性能的影响.结果显示,变形量可显著影响5052铝合金的热变形组织及其力学性能.随着轧制变形量的增加,晶粒被显著拉长,晶界处粗大第二相沿晶界被拉长,甚至被破碎.但是其第二相的组成并没有随着轧制变形量的增加而变化,铸态和轧制态的5052铝合金均由α-Al、Al82Fe18和Mg2Si三相组成.同时随着轧制变形量的增加,其综合力学性能提高,即沿轧制方向且轧制量为75%时的5052铝合金呈现出最优的综合力学性能. 相似文献
5.
6.
7.
分析了管类件定径挤压成形工艺,借助于有限元软件Deform-3D平台,对不同参数组合的45^#管类件定径挤压工艺进行了有限元数值模拟。给出了成形极限范围和不同参数对极限变形程度的影响规律。 相似文献
8.
在Gleeble-3500型热/力模拟试验机上对5052+Er合金进行了高温压缩热变形,研究了变形温度和应变速率对5052+Er合金高温压缩行为的影响。结果表明:当应变速率为0.01 s~(-1)时,真应力-真应变曲线表现出典型的动态再结晶特征;当应变速率为0.1 s~(-1)和1 s~(-1)时,曲线表现出动态回复特征;继续增加应变速率至10 s~(-1)时,流变应力达到峰值后出现后锯齿状波动,此时的合金已经发生了动态再结晶;随着变形温度的升高和应变速率的减小,5052+Er合金的流变应力会逐渐减小;5052+Er合金热压缩变形的流变应力方程为:■不同热变形条件下峰值应力的计算值与测量值的误差在10%以内。 相似文献
9.
目的 采用热塑性挤压法进行近净成形,以克服铝合金切削法工序多、加工余量大、材料利用率低的缺点。方法 利用Deform-3D软件对翼座热塑性成形过程进行数值模拟,分析比较了单向挤压、双向挤压过程的特点、成形效果及所需加载载荷大小。结果 在模拟过程中,单向挤压方案与双向挤压方案均出现了挤压缺陷,通过增加压余厚度成功解决了双向挤压方案的挤压缺陷,且双向挤压所需最大载荷要小于单向挤压。结论 双向挤压方案要优于单向挤压方案。对双向挤压方案进行试验试制,获得了健全的铝合金翼座,为零件大批量生产提供了有力支持。 相似文献
10.
采用喷射沉积工艺制备了SiCp/Al-Zn-Mg-Cu超高强铝合金基复合材料,通过等径角挤压工艺对挤压后的复合材料试样进行了大塑性变形。研究了不同退火处理制度对等径角挤压试样室温力学性能及显微组织的影响,观察了不同状态的断裂特征,结果表明,退火处理后,等径角挤压试样发生韧性断裂,断口出现大量的韧窝,韧窝底部存在一定量等径角剪切破碎产生的细小SiC粒子。同时该复合材料等径角挤压后的力学性能及断裂行为与退火处理制度有关,随着退火温度的升高,复合材料的室温拉伸强度逐渐增大,但其塑性逐渐降低。SiC增强颗粒与Al合金基体之间的界面结合力较小,在拉伸过程中以拔出的形式为主。 相似文献
11.
基于有限元分析软件建立了双通道转角挤压模型,对AZ91镁合金挤压变形过程进行了模拟,并对挤压变形过程、等效应变、挤压力等模拟结果进行了分析。模拟结果表明:双通道转角挤压所需要的挤压力要大于传统的等通道转角挤压,通道夹角越大,挤压所需要的挤压力越小;双通道转角挤压获得的总的应变更大。 相似文献
12.
13.
等通道转角挤压工艺(Equal Channel Angular Pressing,ECAP)是通过剧烈塑性变形改变微观组织结构生产超细晶粒材料的材料加工方法,工件变形的均匀性一直是ECAP 工艺过程中影响材料性能的主要原因之一.采用空间转换法实现了AZ31镁合金多道次ECAP挤压过程中有限元分析相关场量的准确传递,完成了四种不同挤压路径ECAP多道次挤压工艺的有限元模拟,获得了相应挤压件累积等效应变的分布规律.研究确定了经过四道次ECAP挤压以后等效应变累积最为均匀的挤压路径.通过微观组织观察和室温拉伸力学性能实验探讨了不同路径多道次ECAP挤压AZ31镁合金的组织性能变化规律.分析结果表明通过合适的变形路径可以获得细小而均匀的微观组织,当材料的应变累积均匀时,其力学性能也较好. 相似文献
14.
目的研究变形温度对AZ31B镁合金等通道转角挤压(ECAP)过程中晶粒尺寸演变的影响。方法建立AZ31B镁合金动态再结晶和晶粒长大数学模型,采用Fortran语言编写晶粒演变子程序,并通过商用有限元软件MARC的二次开发接口,建立耦合微观组织演变的AZ31B镁合金等通道转角挤压有限元模型,研究变形温度对等通道转角挤压过程应变场、再结晶百分数和晶粒尺寸的影响规律,并与实验结果进行比较。结果随变形温度从200℃增至400℃,原子热激活效应增强,再结晶百分数从75.37%增加至99%,平均晶粒尺寸从6.67μm增加至25.7μm,且晶粒尺寸分布均匀性增大,但是200℃变形的ECAP试样出现开裂。结论在250~300℃温度区间内进行ECAP变形,有助于获得细小均匀的微观组织,同时避免出现变形开裂。 相似文献
15.
采用X射线衍射仪、扫描电镜以及光学显微镜等手段对等径角挤压(ECAP)变形前后7A60铝合金多元合金相的演化进行研究。结果表明,轧制态7A60铝合金内部主要存在MgZn_2、Al_2Cu相,等径角挤压工艺可以明显地碎化合金内部的第二相,改善其分布的均匀性;随着变形道次的增加,基体中粗大第二相沿剪切方向发生明显碎化,第二相发生回溶,四道次ECAP变形后第二相碎化成球状,尺寸由5~20μm碎化到1μm左右;初始态7A60铝合金抗拉强度为305MPa,随着变形道次的增加,合金的强度增强,四道后7A60铝合金的抗拉强度为492MPa;拉伸断口表现为韧性断裂,第二相对韧窝的形状和尺寸起决定性作用。 相似文献
16.
等径角挤压(EACP)能够制备具有超细晶粒的致密材料,而且其材料具有优良的机械性能.所以,等径角挤压是目前材料研究的热点之一.在本文中,建立了Eshelby等效夹杂方法的模型,并采用有限元方法对Cu-10%Cr合金的等径角挤压过程进行了模拟.研究了等径角为90°和120°时的两种模型,并对两种模型中材料的等效应变分布,瞬时应变和变形形状变化,以及截面硬度分布进行了分析.研究结果表明,等径角为120°的模型中材料的应变分布比等径角为90°的模型更加均匀;此外,两种模型中材料的硬度分布与应变分布具有较强的联系,等径角为90°的模型中,材料具有较高的硬度值和更加剧烈的硬度变化.两模型硬度最大值差别达到了8.5%. 相似文献
17.
一种新型Al-Zn-Mg-Cu-Zr合金的变形行为研究 总被引:1,自引:0,他引:1
通过动态镦粗压缩实验的方法研究了一种新型Al-Zn-Mg-Cu-Zr合金的变形行为.结果表明:Al-Zn-Mg-Cu-Zr合金在350℃以下变形时,由于变形温度较低,在变形过程中发生动态析出行为,合金晶内析出细小沉淀相,对合金的进一步变形不利;当变形温度高于400℃时,合金没有出现动态析出行为;当变形温度继续升高到450℃时,合金出现了动态再结晶和晶粒长大现象.所以,该Al-Zn-Mg-Cu-Zr合金的最佳变形温度为400~420℃,极限变形量为60%. 相似文献